(1)
(ア) 公式 ∑k=1nk=2n(n+1), ∑k=1nk2=6n(n+1)(2n+1), ∑k=1nk3=(2n(n+1))2 を利用する。 ∑k=1n(k3−4k2−8k)=∑k=1nk3−4∑k=1nk2−8∑k=1nk =(2n(n+1))2−4⋅6n(n+1)(2n+1)−8⋅2n(n+1) =4n2(n+1)2−32n(n+1)(2n+1)−4n(n+1) =12n(n+1)[3n(n+1)−8(2n+1)−48]=12n(n+1)(3n2+3n−16n−8−48) =12n(n+1)(3n2−13n−56)=12n(n+1)(3n+8)(n−7) (イ) 等比数列の和の公式 ∑k=1nark−1=a1−r1−rn より、 ∑k=1n4k=∑k=1n4⋅4k−1=41−41−4n=4−31−4n=34(4n−1) (ウ) S=∑k=1nk⋅4k=1⋅4+2⋅42+3⋅43+...+n⋅4n 4S=1⋅42+2⋅43+...+(n−1)4n+n⋅4n+1 S−4S=4+42+43+...+4n−n⋅4n+1 −3S=∑k=1n4k−n⋅4n+1=34(4n−1)−n⋅4n+1 S=−31(34(4n−1)−n⋅4n+1)=91(−4(4n−1)+3n⋅4n+1) S=91((−4+12n)4n+4)=94((3n−1)4n+1) (エ) ∑k=1nk2=6n(n+1)(2n+1) (オ) ∑k=1nk2(n−(k−1))=∑k=1nk2(n−k+1)=∑k=1n(n+1)k2−k3=(n+1)∑k=1nk2−∑k=1nk3 =(n+1)6n(n+1)(2n+1)−(2n(n+1))2=6n(n+1)[(n+1)(2n+1)−23n(n+1)] =6n(n+1)[2n2+3n+1−23n2−23n]=12n(n+1)[4n2+6n+2−3n2−3n]=12n(n+1)(n2+3n+2)=12n(n+1)(n+1)(n+2)=12n(n+1)2(n+2) (2)
(ア) a1=S1=12−3(1)=−2 an=Sn−Sn−1=n2−3n−[(n−1)2−3(n−1)]=n2−3n−(n2−2n+1−3n+3)=n2−3n−n2+5n−4=2n−4 a1=2(1)−4=−2. よって、an=2n−4 (イ) a1=S1=13+2=3 an=Sn−Sn−1=n3+2−[(n−1)3+2]=n3+2−(n3−3n2+3n−1+2)=n3−n3+3n2−3n+1=3n2−3n+1 a1=3(1)2−3(1)+1=1=3 よって、 a1=3,an=3n2−3n+1(n≥2). (3)
階差数列を考えると、18, 36, 60, 90, 126, 168, ...
さらに階差数列を考えると、18, 24, 30, 36, 42, ...
さらに階差数列を考えると、6, 6, 6, 6, ...
an=An3+Bn2+Cn+D とおく。 a1=A+B+C+D=6 a2=8A+4B+2C+D=24 a3=27A+9B+3C+D=60 a4=64A+16B+4C+D=120 上記を解くと、A=1,B=0,C=5,D=0 となる。 よって、an=n3+5n. ∑k=1n(k3+5k)=∑k=1nk3+5∑k=1nk=(2n(n+1))2+5⋅2n(n+1)=4n2(n+1)2+410n(n+1)=4n(n+1)(n(n+1)+10)=4n(n+1)(n2+n+10)