数列 $\{a_n\}$ が $a_n = n+1$ で定義されているとき、$\sum_{i=1}^3 a_i$ の値を求めよ。

代数学数列シグマ
2025/6/12

1. 問題の内容

数列 {an}\{a_n\}an=n+1a_n = n+1 で定義されているとき、i=13ai\sum_{i=1}^3 a_i の値を求めよ。

2. 解き方の手順

まず、a1a_1, a2a_2, a3a_3 をそれぞれ計算します。
a1=1+1=2a_1 = 1+1 = 2
a2=2+1=3a_2 = 2+1 = 3
a3=3+1=4a_3 = 3+1 = 4
次に、i=13ai\sum_{i=1}^3 a_i を計算します。
i=13ai=a1+a2+a3=2+3+4=9\sum_{i=1}^3 a_i = a_1 + a_2 + a_3 = 2+3+4 = 9

3. 最終的な答え

9

「代数学」の関連問題

与えられた式 $(x - 2y)^2 - (x + 2y)(x - 2y)$ を簡略化しなさい。

式の簡略化因数分解展開多項式
2025/6/13

3次元ベクトル $\begin{pmatrix} -3j \\ j \\ 2j-1 \end{pmatrix}$ を第 $j$ 列ベクトルとする (3, 3) 行列 $A$ を書き、また、$A$ の第...

行列ベクトル線形代数
2025/6/13

与えられた式 $(x+y)(x-9y) - (x+3y)(x-3y)$ を展開し、整理して簡単にします。

式の展開因数分解代数計算多項式
2025/6/13

与えられた式 $x(x+3y) - (x+y)^2$ を展開して、整理し、簡単にしてください。

式の展開多項式整理
2025/6/13

与えられた数列の総和を求める問題です。数列は $4k+7$ であり、$k$ は $1$ から $n-1$ までの整数です。つまり、次の総和を計算します。 $\sum_{k=1}^{n-1} (4k+7...

数列総和シグマ記号等差数列数式処理
2025/6/13

与えられた式 $x(x+2y) - (x+y)(x-y)$ を簡略化します。

式の展開因数分解同類項の計算
2025/6/13

与えられた式 $4a^2 + 4ab + b^2$ を因数分解してください。

因数分解完全平方多項式
2025/6/13

二次関数のグラフが点$(-1, 0)$, $(2, 0)$, $(3, 8)$を通るとき、その二次関数を求める。

二次関数グラフ方程式展開代入
2025/6/13

2次関数のグラフが3点(0, 3), (1, 0), (-1, 8)を通るとき、その2次関数を求めなさい。

二次関数グラフ連立方程式数式処理
2025/6/13

$\frac{a}{b} = \frac{c}{d}$ のとき、等式 $\frac{a-b}{a+b} = \frac{c-d}{c+d}$ が成り立つことを証明する。

比例式等式の証明
2025/6/13