与えられた式 $(2\sqrt{5} - 3)(2\sqrt{5} + 4)$ を計算し、選択肢の中から正しい答えを選ぶ問題です。

代数学式の計算平方根展開
2025/3/27

1. 問題の内容

与えられた式 (253)(25+4)(2\sqrt{5} - 3)(2\sqrt{5} + 4) を計算し、選択肢の中から正しい答えを選ぶ問題です。

2. 解き方の手順

与えられた式を展開します。
(253)(25+4)=(25)(25)+(25)(4)+(3)(25)+(3)(4)(2\sqrt{5} - 3)(2\sqrt{5} + 4) = (2\sqrt{5})(2\sqrt{5}) + (2\sqrt{5})(4) + (-3)(2\sqrt{5}) + (-3)(4)
=45+856512= 4 \cdot 5 + 8\sqrt{5} - 6\sqrt{5} - 12
=20+2512= 20 + 2\sqrt{5} - 12
=8+25= 8 + 2\sqrt{5}

3. 最終的な答え

8+258 + 2\sqrt{5}

「代数学」の関連問題

与えられた式 $12ab^2 \div (-4b) \times 3ab$ を計算し、最も簡単な形で表します。

式の計算単項式多項式割り算掛け算文字式
2025/4/9

整式 $2x^3 - x^2 + 3x + 5$ を $2x+1$ で割ったときの余りを求める。

多項式剰余の定理割り算因数定理
2025/4/9

与えられた等式 $3x + 2y - 8 = 0$ を $y$ について解きなさい。

一次方程式文字式の計算因数分解整数
2025/4/9

画像にある3つの数学の問題を解きます。 * 問題4:2次方程式 $x^2 + (m+1)x + 3m - 2 = 0$ が異なる2つの実数解をもつときの、$m$の範囲を求める。 * 問題5:2...

二次方程式二次不等式判別式解の公式解と係数の関係2次関数不等式
2025/4/9

$a > 0$とする。2次関数$y = ax^2 - 4ax + 2$ $(1 \leq x \leq 5)$について、 (1) この関数の最大値が$7$のとき、定数$a$の値を求める。 (2) この...

二次関数最大値最小値平方完成定義域グラフ
2025/4/9

与えられた2次関数 $y = \frac{1}{4}x^2 - 3x + 10$ (ただし、$2 \le x \le 8$) について、以下の問いに答える。 (1) グラフの頂点の座標と軸の方程式を求...

二次関数平方完成最大値最小値定義域
2025/4/9

与えられた4つの数式を展開する問題です。 (5) $(3a - 2b)^2$ (6) $(a+3)(a-3)$ (7) $(2x - y)(2x + y)$ (8) $(x+y+3)(x+y-5)$

式の展開多項式
2025/4/9

次の式を因数分解する。 (1) $2m^2 - 4m$ (2) $x^2 - 8x + 12$ (3) $x^2 + 3x - 40$ (4) $x^2 - 8x - 9$ (5) $x^2 + 13...

因数分解二次式多項式
2025/4/9

与えられた2次式 $x^2 - xy - 6y^2 - 4x + 7y + 3$ を因数分解し、 $(x + \text{サ}y - \text{シ})(x - \text{ス}y - \text{セ...

因数分解二次式多項式
2025/4/9

(1) 多項式 $x^3 + 5x^2 + ax + 3$ を $x+1$ で割った余りが $4$ であるとき、$a$ の値を求めよ。 (2) 多項式 $x^3 + ax^2 - 4x + 3$ を ...

多項式剰余の定理因数定理
2025/4/9