与えられた複素数の分数 $\frac{\sqrt{2}+1+i}{\sqrt{2}+1-i}$ を簡略化します。代数学複素数複素数の演算共役複素数分数2025/6/121. 問題の内容与えられた複素数の分数 2+1+i2+1−i\frac{\sqrt{2}+1+i}{\sqrt{2}+1-i}2+1−i2+1+i を簡略化します。2. 解き方の手順分母の共役複素数を分母分子にかけます。分母の共役複素数は 2+1+i\sqrt{2}+1+i2+1+i です。2+1+i2+1−i=2+1+i2+1−i⋅2+1+i2+1+i\frac{\sqrt{2}+1+i}{\sqrt{2}+1-i} = \frac{\sqrt{2}+1+i}{\sqrt{2}+1-i} \cdot \frac{\sqrt{2}+1+i}{\sqrt{2}+1+i}2+1−i2+1+i=2+1−i2+1+i⋅2+1+i2+1+i=(2+1+i)2(2+1)2−(i)2= \frac{(\sqrt{2}+1+i)^2}{(\sqrt{2}+1)^2 - (i)^2}=(2+1)2−(i)2(2+1+i)2分子を展開します。(2+1+i)2=(2+1)2+2i(2+1)+i2(\sqrt{2}+1+i)^2 = (\sqrt{2}+1)^2 + 2i(\sqrt{2}+1) + i^2(2+1+i)2=(2+1)2+2i(2+1)+i2=2+22+1+2i(2+1)−1= 2 + 2\sqrt{2} + 1 + 2i(\sqrt{2}+1) - 1=2+22+1+2i(2+1)−1=2+22+2i(2+1)= 2 + 2\sqrt{2} + 2i(\sqrt{2}+1)=2+22+2i(2+1)分母を展開します。(2+1)2−i2=2+22+1−(−1)=4+22(\sqrt{2}+1)^2 - i^2 = 2 + 2\sqrt{2} + 1 - (-1) = 4 + 2\sqrt{2}(2+1)2−i2=2+22+1−(−1)=4+22したがって、2+22+2i(2+1)4+22=2(1+2+i(2+1))2(2+2)=(1+2)(1+i)2+2\frac{2 + 2\sqrt{2} + 2i(\sqrt{2}+1)}{4 + 2\sqrt{2}} = \frac{2(1 + \sqrt{2} + i(\sqrt{2}+1))}{2(2 + \sqrt{2})} = \frac{(1 + \sqrt{2})(1+i)}{2 + \sqrt{2}}4+222+22+2i(2+1)=2(2+2)2(1+2+i(2+1))=2+2(1+2)(1+i)=(1+2)(1+i)2(2+1)=1+i2=2(1+i)2=22+22i= \frac{(1+\sqrt{2})(1+i)}{\sqrt{2}(\sqrt{2}+1)} = \frac{1+i}{\sqrt{2}} = \frac{\sqrt{2}(1+i)}{2} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i=2(2+1)(1+2)(1+i)=21+i=22(1+i)=22+22i3. 最終的な答え22+22i\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i22+22i