行列の正則性を判定するには、行列式を計算します。行列式が0でなければ正則であり、逆行列が存在します。逆行列は、掃き出し法(行基本変形)を用いて求めます。
(i) A=(1357) det(A)=(1)(7)−(5)(3)=7−15=−8=0 (1357∣∣1001)R2−3R1(105−8∣∣1−301)−81R2(1051∣∣1830−81)R1−5R2(1001∣∣1−8158385−81)=(1001∣∣−878385−81) (ii) A=−11−1123211 det(A)=−1(2−3)−1(1+1)+2(3+2)=1−2+10=9=0 −11−1123211∣∣∣100010001R1×(−1)11−1−123−211∣∣∣−100010001R2−R1,R3+R1100−132−23−1∣∣∣−11−101000131R2100−112−21−1∣∣∣−131−10310001R1+R2,R3−2R2100010−11−3∣∣∣−3231−353131−32001−31R3100010−111∣∣∣−32319531319200−31R1+R3,R2−R3100010001∣∣∣−91−9295959192−3131−31 (iii) A=12−33−1−2−202 det(A)=1(−2−0)−3(4−0)+(−2)(−4−3)=−2−12+14=0 (iv) A=12221−1232 det(A)=1(2+3)−2(4−6)+2(−2−2)=5+4−8=1=0 12221−1232∣∣∣100010001R2−2R1,R3−2R11002−3−52−1−2∣∣∣1−2−2010001−31R210021−5231−2∣∣∣132−20−310001R1−2R2,R3+5R21000103431−31∣∣∣−31323432−31−35001−3R310001034311∣∣∣−3132−432−31500−3R1−34R3,R2−31R3100010001∣∣∣52−4−6−2541−3 (v) A=100a10bc1 det(A)=1=0 100a10bc1∣∣∣100010001R1−aR2100010b−acc1∣∣∣100−a10001R1−(b−ac)R3,R2−cR3100010001∣∣∣100−a10−b+ac−c1 (vi) A=123245356 det(A)=1(24−25)−2(12−15)+3(10−12)=−1+6−6=−1=0 123245356∣∣∣100010001R2−2R1,R3−3R110020−13−1−3∣∣∣1−2−3010001R2↔R31002−103−3−1∣∣∣1−3−2001010−R2,−R3100210331∣∣∣13200−10−10R1−2R2100010−331∣∣∣−53200−12−10R1+3R3,R2−3R3100010001∣∣∣1−32−33−12−10