## 問題の内容
画像の問題は、次の2つの連立一次方程式を解くことです。
(2)
$\begin{cases}
-4x + 3y = -11 \\
4x - 8y = -24
\end{cases}$
(3)
$\begin{cases}
2x + 9y = -5 \\
5x - 9y = 19
\end{cases}$
## 解き方の手順
**(2) の連立方程式**
1. 2つの式を足し合わせることで、$x$ を消去します。
2. 上の式を簡略化します。
3. $y$ について解きます。
4. $y = 7$ を最初の式に代入して、$x$ を求めます。
5. 式を簡略化します。
6. $x$ について解きます。
**(3) の連立方程式**
1. 2つの式を足し合わせることで、$y$ を消去します。
2. 上の式を簡略化します。
3. $x$ について解きます。
4. $x = 2$ を最初の式に代入して、$y$ を求めます。
5. 式を簡略化します。
6. $y$ について解きます。
## 最終的な答え
(2) の解:
(3) の解: