点 $(3, 1)$ を通り、ベクトル $\vec{n} = (2, 1)$ に垂直な直線の方程式を求める問題です。

幾何学直線ベクトル法線ベクトル方程式
2025/6/12

1. 問題の内容

(3,1)(3, 1) を通り、ベクトル n=(2,1)\vec{n} = (2, 1) に垂直な直線の方程式を求める問題です。

2. 解き方の手順

直線上の任意の点 (x,y)(x, y) を考えます。
(3,1)(3, 1) を通りベクトル n=(2,1)\vec{n} = (2, 1) に垂直な直線の方程式は、ベクトル n\vec{n} が法線ベクトルであることから、
2(x3)+1(y1)=02(x - 3) + 1(y - 1) = 0
と表すことができます。
これを整理すると、
2x6+y1=02x - 6 + y - 1 = 0
2x+y7=02x + y - 7 = 0
となります。

3. 最終的な答え

求める直線の方程式は、
2x+y7=02x + y - 7 = 0
あるいは
2x+y=72x + y = 7
です。

「幾何学」の関連問題

ベクトル $\vec{a}$ と $\vec{b}$ について、$|\vec{a}| = 3$, $|\vec{b}| = 2$, $|\vec{a} - 2\vec{b}| = \sqrt{37}$...

ベクトル内積ベクトルの大きさベクトルのなす角
2025/6/12

ベクトル $\vec{a} = (-1, 2)$ に垂直な単位ベクトルを求める問題です。

ベクトル垂直単位ベクトルベクトルの大きさ
2025/6/12

ベクトル $\vec{a} = (1, 1)$ とベクトル $\vec{b} = (1 - \sqrt{3}, 1 + \sqrt{3})$ が与えられたとき、ベクトル $\vec{a}$ と $\v...

ベクトル内積ベクトルのなす角空間ベクトル
2025/6/12

ベクトル $\vec{a}$ と $\vec{b}$ の大きさと、$\vec{a} - 2\vec{b}$ の大きさが与えられているとき、内積 $\vec{a} \cdot \vec{b}$ を求める...

ベクトル内積ベクトルの大きさ
2025/6/12

半径1の円Aがあり、Aから距離2の点Bから円Aへの接線BCを引く。線分CDが円Aの直径となるように点Dをとる。このとき、BC, BD, sin ∠ABC, tan ∠BAD, △ABDの外接円の半径、...

接線三平方の定理三角比余弦定理正弦定理外接円角度
2025/6/12

$|OA|=5$, $|OB|=12$の長方形OABCがある。次のベクトルと平行な単位ベクトルを、$OA$, $OB$で表せ。 (1) $OA$ (2) $OC$

ベクトル単位ベクトル長方形ベクトルの加算ベクトルのスカラー倍
2025/6/12

$\triangle ABC$において、$\frac{\sin A}{4} = \frac{\sin B}{5} = \frac{\sin C}{6}$ が成り立つとき、3辺の長さの比 $BC:CA:...

三角比正弦定理余弦定理三角形の面積辺の比
2025/6/12

$|\vec{a}| = 2$, $|\vec{b}| = 1$ で、$\vec{a} + \vec{b}$ と $2\vec{a} - 5\vec{b}$ が垂直であるとき、$\vec{a}$ と ...

ベクトル内積ベクトルのなす角
2025/6/12

問題1:$|\vec{a}|=4, |\vec{b}|=3, |\vec{a}+2\vec{b}|=2\sqrt{10}$ を満たすとき、以下の値を求める。 (1) $\vec{a} \cdot \v...

ベクトル内積ベクトルの大きさ
2025/6/12

$\triangle OAB$において、辺$AB$を$2:3$の比に内分する点を$L$, 辺$OA$の中点を$M$とし、線分$OL$と線分$BM$の交点を$P$とするとき、$BP:PM$を求めよ。

ベクトル内分点線分の比平面幾何
2025/6/12