## 問題の内容代数学式の計算有理化展開因数分解平方根2025/6/12## 問題の内容x=23+1x = \frac{2}{\sqrt{3}+1}x=3+12、 y=23−1y = \frac{2}{\sqrt{3}-1}y=3−12 のとき、以下の式の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2+y^2x2+y2(4) x2y+xy2x^2y+xy^2x2y+xy2(5) x3+y3x^3+y^3x3+y3## 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=23+1=2(3−1)(3+1)(3−1)=2(3−1)3−1=2(3−1)2=3−1x = \frac{2}{\sqrt{3}+1} = \frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{2(\sqrt{3}-1)}{3-1} = \frac{2(\sqrt{3}-1)}{2} = \sqrt{3}-1x=3+12=(3+1)(3−1)2(3−1)=3−12(3−1)=22(3−1)=3−1y=23−1=2(3+1)(3−1)(3+1)=2(3+1)3−1=2(3+1)2=3+1y = \frac{2}{\sqrt{3}-1} = \frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{2(\sqrt{3}+1)}{3-1} = \frac{2(\sqrt{3}+1)}{2} = \sqrt{3}+1y=3−12=(3−1)(3+1)2(3+1)=3−12(3+1)=22(3+1)=3+1(1) x+yx+yx+y の値を求めます。x+y=(3−1)+(3+1)=23x+y = (\sqrt{3}-1) + (\sqrt{3}+1) = 2\sqrt{3}x+y=(3−1)+(3+1)=23(2) xyxyxy の値を求めます。xy=(3−1)(3+1)=3−1=2xy = (\sqrt{3}-1)(\sqrt{3}+1) = 3-1 = 2xy=(3−1)(3+1)=3−1=2(3) x2+y2x^2+y^2x2+y2 の値を求めます。x2+y2=(x+y)2−2xy=(23)2−2(2)=12−4=8x^2+y^2 = (x+y)^2 - 2xy = (2\sqrt{3})^2 - 2(2) = 12 - 4 = 8x2+y2=(x+y)2−2xy=(23)2−2(2)=12−4=8(4) x2y+xy2x^2y+xy^2x2y+xy2 の値を求めます。x2y+xy2=xy(x+y)=2(23)=43x^2y+xy^2 = xy(x+y) = 2(2\sqrt{3}) = 4\sqrt{3}x2y+xy2=xy(x+y)=2(23)=43(5) x3+y3x^3+y^3x3+y3 の値を求めます。x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=23((23)2−3(2))=23(12−6)=23(6)=123x^3+y^3 = (x+y)(x^2-xy+y^2) = (x+y)((x+y)^2 - 3xy) = 2\sqrt{3}((2\sqrt{3})^2 - 3(2)) = 2\sqrt{3}(12-6) = 2\sqrt{3}(6) = 12\sqrt{3}x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=23((23)2−3(2))=23(12−6)=23(6)=123## 最終的な答え(1) x+y=23x+y = 2\sqrt{3}x+y=23(2) xy=2xy = 2xy=2(3) x2+y2=8x^2+y^2 = 8x2+y2=8(4) x2y+xy2=43x^2y+xy^2 = 4\sqrt{3}x2y+xy2=43(5) x3+y3=123x^3+y^3 = 12\sqrt{3}x3+y3=123