次の極限を求めます。 $\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{(2x-\pi)^2}$解析学極限三角関数テイラー展開微分2025/6/131. 問題の内容次の極限を求めます。limx→π21−sinx(2x−π)2\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{(2x-\pi)^2}limx→2π(2x−π)21−sinx2. 解き方の手順まず、x−π2=tx - \frac{\pi}{2} = tx−2π=t とおくと、x=t+π2x = t + \frac{\pi}{2}x=t+2π となります。x→π2x \to \frac{\pi}{2}x→2π のとき、t→0t \to 0t→0 となります。したがって、limx→π21−sinx(2x−π)2=limt→01−sin(t+π2)(2(t+π2)−π)2=limt→01−cost(2t)2\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{(2x-\pi)^2} = \lim_{t \to 0} \frac{1-\sin(t+\frac{\pi}{2})}{(2(t+\frac{\pi}{2})-\pi)^2} = \lim_{t \to 0} \frac{1-\cos t}{(2t)^2}limx→2π(2x−π)21−sinx=limt→0(2(t+2π)−π)21−sin(t+2π)=limt→0(2t)21−costcost=1−2sin2(t2)\cos t = 1 - 2\sin^2(\frac{t}{2})cost=1−2sin2(2t) より、limt→01−cost4t2=limt→01−(1−2sin2(t2))4t2=limt→02sin2(t2)4t2=limt→012sin2(t2)t2\lim_{t \to 0} \frac{1-\cos t}{4t^2} = \lim_{t \to 0} \frac{1-(1 - 2\sin^2(\frac{t}{2}))}{4t^2} = \lim_{t \to 0} \frac{2\sin^2(\frac{t}{2})}{4t^2} = \lim_{t \to 0} \frac{1}{2} \frac{\sin^2(\frac{t}{2})}{t^2}limt→04t21−cost=limt→04t21−(1−2sin2(2t))=limt→04t22sin2(2t)=limt→021t2sin2(2t)limt→0sin(t2)t2=1\lim_{t \to 0} \frac{\sin(\frac{t}{2})}{\frac{t}{2}} = 1limt→02tsin(2t)=1 であることを利用すると、limt→012sin2(t2)t2=limt→012sin2(t2)4(t2)2=limt→018(sin(t2)t2)2=18(1)2=18\lim_{t \to 0} \frac{1}{2} \frac{\sin^2(\frac{t}{2})}{t^2} = \lim_{t \to 0} \frac{1}{2} \frac{\sin^2(\frac{t}{2})}{4(\frac{t}{2})^2} = \lim_{t \to 0} \frac{1}{8} (\frac{\sin(\frac{t}{2})}{\frac{t}{2}})^2 = \frac{1}{8} (1)^2 = \frac{1}{8}limt→021t2sin2(2t)=limt→0214(2t)2sin2(2t)=limt→081(2tsin(2t))2=81(1)2=813. 最終的な答え18\frac{1}{8}81