4kmの道のりを、歩くか走るかして行く。歩く速さは分速80m、走る速さは分速200mである。目的地に着くまでにかかる時間を32分以上35分以下にするとき、歩く道のりを何m以上何m以下にすればよいか。

代数学不等式文章問題連立不等式速度距離時間
2025/6/13

1. 問題の内容

4kmの道のりを、歩くか走るかして行く。歩く速さは分速80m、走る速さは分速200mである。目的地に着くまでにかかる時間を32分以上35分以下にするとき、歩く道のりを何m以上何m以下にすればよいか。

2. 解き方の手順

歩く距離を xx (m)とする。
走る距離は 4000x4000 - x (m)となる。
かかる時間は、歩く時間 + 走る時間で計算できる。
歩く時間は x/80x/80 (分)、走る時間は (4000x)/200(4000-x)/200 (分)である。
したがって、合計時間は x/80+(4000x)/200x/80 + (4000-x)/200 (分)となる。
この時間が32分以上35分以下になるので、以下の不等式が成り立つ。
32x80+4000x2003532 \le \frac{x}{80} + \frac{4000-x}{200} \le 35
不等式を解く。まず、全体を200倍する。
64005x200×200+4000x200×20070006400 \le \frac{5x}{200}\times 200 + \frac{4000-x}{200} \times 200 \le 7000
64005x+4000x70006400 \le 5x + 4000 - x \le 7000
64004x+400070006400 \le 4x + 4000 \le 7000
次に、4000を引く。
24004x30002400 \le 4x \le 3000
最後に、4で割る。
600x750600 \le x \le 750

3. 最終的な答え

歩く道のりは600m以上750m以下にすればよい。

「代数学」の関連問題

ある製品の原価が4月には1個あたり100円、5月には1個あたり115円だった。2カ月の合計生産個数は10000個で、1個あたりの平均原価は109円だった。4月の生産個数を求める。

一次方程式文章問題数量関係
2025/6/14

PはQよりも10歳若い。また、Pの年齢はQの年齢の5/7である。このとき、Pの年齢を求める。

方程式連立方程式文章問題
2025/6/14

$a$は定数とする。関数 $f(x) = (x^2+2x+2)^2 - 2a(x^2+2x+2) + a$ の最小値を$n$とする。 (1) $t = x^2 + 2x + 2$とする。$x$がすべて...

二次関数最小値平方完成場合分け
2025/6/14

与えられた連立不等式を解きます。連立不等式は2つあり、それぞれ以下の通りです。 (1) $ \begin{cases} 6x-9 < 2x-1 \\ 3x+7 \leq 4(2x+3) \end{ca...

連立不等式不等式一次不等式
2025/6/14

第3項が1、初項から第8項までの和が-10である等差数列$\{a_n\}$がある。 (1) 数列$\{a_n\}$の初項と公差を求める。 (2) 数列$\{a_n\}$を、第$k$群に$2^{k-1}...

等差数列数列群数列連立方程式
2025/6/14

問題は等差数列 $\{a_n\}$ に関するものです。 (1) 第3項が1、初項から第8項までの和が-10であるとき、初項と公差を求めます。 (2) 数列 $\{a_n\}$ を第k群に $2^{k-...

数列等差数列群数列
2025/6/14

等差数列 $\{a_n\}$ について、第3項が1、初項から第8項までの和が-10である。 (1) $\{a_n\}$ の初項と公差を求める。 (2) $\{a_n\}$ を、第 $k$ 群に $2^...

等差数列数列群数列
2025/6/14

1個120円の菓子Aと1個80円の菓子Bを合わせて30個買う。100円の箱に入れてもらう。菓子代と箱代の合計金額を3000円以下にするとき、菓子Aは最大で何個買えるかを求める。

不等式文章問題一次不等式
2025/6/14

与えられた不等式 $x^2 + 6x + 9 \leqq 0$ を解く。

不等式二次不等式因数分解解の公式
2025/6/14

不等式 $4 + \frac{1}{5}(n-4) > \frac{1}{2}n$ を満たす最大の自然数 $n$ を求める問題です。

不等式一次不等式自然数
2025/6/14