(1) $\sum_{k=1}^n 12k^2$ を求めよ。 (2) $\sum_{k=1}^n 2k(3k-2)$ を求めよ。代数学数列シグマ公式の利用計算2025/6/151. 問題の内容(1) ∑k=1n12k2\sum_{k=1}^n 12k^2∑k=1n12k2 を求めよ。(2) ∑k=1n2k(3k−2)\sum_{k=1}^n 2k(3k-2)∑k=1n2k(3k−2) を求めよ。2. 解き方の手順(1)∑k=1n12k2=12∑k=1nk2\sum_{k=1}^n 12k^2 = 12 \sum_{k=1}^n k^2∑k=1n12k2=12∑k=1nk2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) より、∑k=1n12k2=12⋅n(n+1)(2n+1)6=2n(n+1)(2n+1)\sum_{k=1}^n 12k^2 = 12 \cdot \frac{n(n+1)(2n+1)}{6} = 2n(n+1)(2n+1)∑k=1n12k2=12⋅6n(n+1)(2n+1)=2n(n+1)(2n+1)(2)∑k=1n2k(3k−2)=∑k=1n(6k2−4k)=6∑k=1nk2−4∑k=1nk\sum_{k=1}^n 2k(3k-2) = \sum_{k=1}^n (6k^2 - 4k) = 6\sum_{k=1}^n k^2 - 4\sum_{k=1}^n k∑k=1n2k(3k−2)=∑k=1n(6k2−4k)=6∑k=1nk2−4∑k=1nk∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1) より、∑k=1n2k(3k−2)=6⋅n(n+1)(2n+1)6−4⋅n(n+1)2=n(n+1)(2n+1)−2n(n+1)\sum_{k=1}^n 2k(3k-2) = 6 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} = n(n+1)(2n+1) - 2n(n+1)∑k=1n2k(3k−2)=6⋅6n(n+1)(2n+1)−4⋅2n(n+1)=n(n+1)(2n+1)−2n(n+1)=n(n+1)(2n+1−2)=n(n+1)(2n−1)= n(n+1)(2n+1-2) = n(n+1)(2n-1)=n(n+1)(2n+1−2)=n(n+1)(2n−1)3. 最終的な答え(1) 2n(n+1)(2n+1)2n(n+1)(2n+1)2n(n+1)(2n+1)(2) n(n+1)(2n−1)n(n+1)(2n-1)n(n+1)(2n−1)