$x$は自然数とする。条件$p$:「$x$が2の倍数かつ3の倍数」が、条件$q$:「$x$が12の倍数」であるための何条件かを問う問題。

代数学命題必要条件十分条件倍数自然数
2025/6/15

1. 問題の内容

xxは自然数とする。条件pp:「xxが2の倍数かつ3の倍数」が、条件qq:「xxが12の倍数」であるための何条件かを問う問題。

2. 解き方の手順

(i) pqp \Rightarrow q (十分条件か)の確認:
xxが2の倍数かつ3の倍数ならば、xxは6の倍数である。したがって、x=6kx = 6kkkは自然数)と表せる。
このとき、xxが12の倍数であるとは限らない。例えば、k=1k = 1のとき、x=6x = 6であり、これは12の倍数ではない。
よって、pqp \Rightarrow qは偽である。したがって、ppqqであるための十分条件ではない。
(ii) qpq \Rightarrow p (必要条件か)の確認:
xxが12の倍数ならば、x=12kx = 12kkkは自然数)と表せる。
このとき、x=12k=2(6k)x = 12k = 2(6k)より、xxは2の倍数である。
また、x=12k=3(4k)x = 12k = 3(4k)より、xxは3の倍数である。
したがって、xxが12の倍数ならば、xxは2の倍数かつ3の倍数である。
よって、qpq \Rightarrow pは真である。したがって、ppqqであるための必要条件である。
ppqqであるための必要条件であるが、十分条件ではない。

3. 最終的な答え

「代数学」の関連問題

与えられた不等式 $4 + \frac{1}{5}(n-4) > \frac{1}{2}n$ を満たす最大の自然数 $n$ を求めます。

不等式一次不等式整数解
2025/6/15

不等式 $4 + \frac{1}{5}(n-4) > \frac{1}{2}n$ を満たす最大の自然数 $n$ を求める問題です。

不等式一次不等式自然数
2025/6/15

与えられた不等式 $600 + 25(n - 20) \le 32n$ を満たす最小の自然数 $n$ を求める問題です。

不等式一次不等式代数
2025/6/15

与えられた5つの2次方程式について、指定された条件(実数解を持つ、重解を持つ、異なる二つの実数解を持つ)を満たすような $m$ の値または範囲を求める。

二次方程式判別式実数解重解
2025/6/15

与えられた連立不等式を解く問題です。 連立不等式は次の通りです。 $\begin{cases} 3x+1 \geq 7x-5 \\ -x+6 < 3(1-2x) \end{cases}$

不等式連立不等式一次不等式
2025/6/15

関数 $y = -x^2 + 2x + c$ ($0 \leq x \leq 3$) の最小値が -5 であるとき、$c$ の値を求める問題です。

二次関数最大・最小平方完成グラフ
2025/6/15

2つの不等式 $x \geq 3$ と $x > 0$ の共通範囲を求める問題です。

不等式共通範囲数直線
2025/6/15

関数 $y = 2x^2 + 4x + c$ が、$-2 \leq x \leq 1$ の範囲で最大値7を取るように、定数 $c$ の値を求める問題です。

二次関数最大値平方完成定義域
2025/6/15

問題は、2次方程式を解く問題(16)と、2次不等式を解く問題(17)です。それぞれ(1)から(6)までの問題があります。

二次方程式二次不等式解の公式因数分解
2025/6/15

(3) $y$ は $x$ に反比例し、$x = -2$ のとき $y = 2$ である。 ① $y$ を $x$ の式で表しなさい。 ② ①で表した式について、この関数のグラフをかき...

反比例グラフ度数分布中央値球の表面積幾何学
2025/6/15