$\sum_{k=1}^{800} \frac{1}{k(k+1)(k+2)(k+3)}$ を計算する。解析学級数部分分数分解telescoping sum2025/6/151. 問題の内容∑k=18001k(k+1)(k+2)(k+3)\sum_{k=1}^{800} \frac{1}{k(k+1)(k+2)(k+3)}∑k=1800k(k+1)(k+2)(k+3)1 を計算する。2. 解き方の手順この問題を解くために、部分分数分解を利用する。1k(k+1)(k+2)(k+3)\frac{1}{k(k+1)(k+2)(k+3)}k(k+1)(k+2)(k+3)1 を部分分数に分解すると、次のようになる。1k(k+1)(k+2)(k+3)=Ak+Bk+1+Ck+2+Dk+3\frac{1}{k(k+1)(k+2)(k+3)} = \frac{A}{k} + \frac{B}{k+1} + \frac{C}{k+2} + \frac{D}{k+3}k(k+1)(k+2)(k+3)1=kA+k+1B+k+2C+k+3Dここで、両辺に k(k+1)(k+2)(k+3)k(k+1)(k+2)(k+3)k(k+1)(k+2)(k+3) をかけると、1=A(k+1)(k+2)(k+3)+Bk(k+2)(k+3)+Ck(k+1)(k+3)+Dk(k+1)(k+2)1 = A(k+1)(k+2)(k+3) + Bk(k+2)(k+3) + Ck(k+1)(k+3) + Dk(k+1)(k+2)1=A(k+1)(k+2)(k+3)+Bk(k+2)(k+3)+Ck(k+1)(k+3)+Dk(k+1)(k+2)k=0k = 0k=0 を代入すると、1=A(1)(2)(3) ⟹ A=161 = A(1)(2)(3) \implies A = \frac{1}{6}1=A(1)(2)(3)⟹A=61k=−1k = -1k=−1 を代入すると、1=B(−1)(1)(2) ⟹ B=−121 = B(-1)(1)(2) \implies B = -\frac{1}{2}1=B(−1)(1)(2)⟹B=−21k=−2k = -2k=−2 を代入すると、1=C(−2)(−1)(1) ⟹ C=121 = C(-2)(-1)(1) \implies C = \frac{1}{2}1=C(−2)(−1)(1)⟹C=21k=−3k = -3k=−3 を代入すると、1=D(−3)(−2)(−1) ⟹ D=−161 = D(-3)(-2)(-1) \implies D = -\frac{1}{6}1=D(−3)(−2)(−1)⟹D=−61したがって、1k(k+1)(k+2)(k+3)=16(1k−3k+1+3k+2−1k+3)\frac{1}{k(k+1)(k+2)(k+3)} = \frac{1}{6} \left( \frac{1}{k} - \frac{3}{k+1} + \frac{3}{k+2} - \frac{1}{k+3} \right)k(k+1)(k+2)(k+3)1=61(k1−k+13+k+23−k+31)=16(1k−1k+1−2k+1+2k+2+1k+2−1k+3)= \frac{1}{6} \left( \frac{1}{k} - \frac{1}{k+1} - \frac{2}{k+1} + \frac{2}{k+2} + \frac{1}{k+2} - \frac{1}{k+3} \right)=61(k1−k+11−k+12+k+22+k+21−k+31)=16[(1k−1k+1)−2(1k+1−1k+2)+(1k+2−1k+3)]= \frac{1}{6} \left[ \left( \frac{1}{k} - \frac{1}{k+1} \right) - 2 \left( \frac{1}{k+1} - \frac{1}{k+2} \right) + \left( \frac{1}{k+2} - \frac{1}{k+3} \right) \right]=61[(k1−k+11)−2(k+11−k+21)+(k+21−k+31)]より簡単な式変形として,1k(k+1)(k+2)(k+3)=13(1k(k+1)(k+2)−1(k+1)(k+2)(k+3))\frac{1}{k(k+1)(k+2)(k+3)} = \frac{1}{3} \left( \frac{1}{k(k+1)(k+2)} - \frac{1}{(k+1)(k+2)(k+3)} \right)k(k+1)(k+2)(k+3)1=31(k(k+1)(k+2)1−(k+1)(k+2)(k+3)1)∑k=18001k(k+1)(k+2)(k+3)=13∑k=1800(1k(k+1)(k+2)−1(k+1)(k+2)(k+3))\sum_{k=1}^{800} \frac{1}{k(k+1)(k+2)(k+3)} = \frac{1}{3} \sum_{k=1}^{800} \left( \frac{1}{k(k+1)(k+2)} - \frac{1}{(k+1)(k+2)(k+3)} \right)∑k=1800k(k+1)(k+2)(k+3)1=31∑k=1800(k(k+1)(k+2)1−(k+1)(k+2)(k+3)1)これはtelescoping sum なので、13(11⋅2⋅3−1801⋅802⋅803)=13(16−1801⋅802⋅803)\frac{1}{3} \left( \frac{1}{1 \cdot 2 \cdot 3} - \frac{1}{801 \cdot 802 \cdot 803} \right) = \frac{1}{3} \left( \frac{1}{6} - \frac{1}{801 \cdot 802 \cdot 803} \right)31(1⋅2⋅31−801⋅802⋅8031)=31(61−801⋅802⋅8031)=118−13⋅801⋅802⋅803= \frac{1}{18} - \frac{1}{3 \cdot 801 \cdot 802 \cdot 803}=181−3⋅801⋅802⋅8031=118−11929684606= \frac{1}{18} - \frac{1}{1929684606}=181−19296846061=964847303−918⋅964847303=96484729417367251454= \frac{964847303 - 9}{18 \cdot 964847303} = \frac{964847294}{17367251454}=18⋅964847303964847303−9=17367251454964847294=4824236478683625727= \frac{482423647}{8683625727}=8683625727482423647∑k=18001k(k+1)(k+2)(k+3)=13(11⋅2⋅3−1801⋅802⋅803)=13(16−1646428606)=118−11939285818=323214303−15817857454=3232143025817857454=1616071512908928727\sum_{k=1}^{800} \frac{1}{k(k+1)(k+2)(k+3)} = \frac{1}{3} \left( \frac{1}{1\cdot 2\cdot 3} - \frac{1}{801 \cdot 802 \cdot 803}\right) = \frac{1}{3} \left(\frac{1}{6}-\frac{1}{646428606}\right) = \frac{1}{18} - \frac{1}{1939285818} = \frac{323214303-1}{5817857454} = \frac{323214302}{5817857454} = \frac{161607151}{2908928727}∑k=1800k(k+1)(k+2)(k+3)1=31(1⋅2⋅31−801⋅802⋅8031)=31(61−6464286061)=181−19392858181=5817857454323214303−1=5817857454323214302=29089287271616071513. 最終的な答え1616071512908928727\frac{161607151}{2908928727}2908928727161607151