関数 $y = \frac{1}{3x-1}$ ($x > \frac{1}{3}$) の逆関数を求める問題です。選択肢の中から正しいものを選びます。

解析学逆関数関数の計算分数関数
2025/6/15

1. 問題の内容

関数 y=13x1y = \frac{1}{3x-1} (x>13x > \frac{1}{3}) の逆関数を求める問題です。選択肢の中から正しいものを選びます。

2. 解き方の手順

逆関数を求めるには、まず xxyy を入れ替えます。
x=13y1x = \frac{1}{3y-1}
次に、yy について解きます。
x(3y1)=1x(3y-1) = 1
3xyx=13xy - x = 1
3xy=x+13xy = x + 1
y=x+13xy = \frac{x+1}{3x}
選択肢の中に y=x+13xy = \frac{x+1}{3x} があるので、これが答えになります。

3. 最終的な答え

(3) y=x+13xy = \frac{x+1}{3x}

「解析学」の関連問題

$0 \le t \le 2$ を満たす実数 $t$ に対して、 $xy$ 平面上の曲線 $y = |\sqrt{x} - t|$ を $C$ とする。また、曲線 $C$ と $x$ 軸、および直線 ...

積分絶対値面積最大値最小値関数のグラフ
2025/6/16

実数 $t$ が $0 \le t \le 2$ を満たすとき、曲線 $y = \sqrt{\sqrt{x} - t}$ を $C$ とする。曲線 $C$ と $x$ 軸、および直線 $x = 4$ ...

積分面積最大値最小値置換積分
2025/6/16

与えられた関数 $y = \log{\frac{x\sqrt{2x+1}}{(2x-1)^2}}$ を簡単化します。対数の性質を利用して式を分解し、整理します。

対数関数の簡単化対数の性質
2025/6/16

与えられた関数を微分せよ。問題は(2), (4), (6), (11)の4つです。 (2) $y = e^{-2x}$ (4) $y = 5^x$ (6) $y = 5e^{2x+3}$ (11) $...

微分指数関数合成関数商の微分
2025/6/16

与えられた4つの極限値を求めます。 (1) $\lim_{x \to -2} x^3$ (2) $\lim_{x \to 0} 3^x$ (3) $\lim_{x \to x} \cos x$ (問題...

極限関数の極限連続関数
2025/6/16

関数 $f(x) = \sqrt{x-1}$ の導関数を求めよ。

導関数微分合成関数の微分法ルート関数
2025/6/16

問題は、以下の3つの関数について、導関数を求め、増減表を作成し、グラフを描くことです。 (1) $y_1 = x^2e^{-x}$ (2) $y_2 = (1-x^2)e^{-x^2}$ (3) $y...

導関数増減表グラフ微分
2025/6/16

次の2つの関数について、増減、極値、および極限値 $\lim_{x \to \pm \infty} y$ を調べ、グラフを描く。 (1) $y = \frac{2x}{x^2+1}$ (2) $y =...

関数の増減極値極限グラフ
2025/6/16

与えられた6つの積分問題を解く。 (1) $\int xe^{x^2} dx$ (2) $\int \frac{\log x}{x} dx$ (3) $\int e^{e^x + x} dx$ (4)...

積分置換積分
2025/6/16

与えられた三角関数の式を簡略化し、指定された形式で表現する問題です。左側の式は$2\sqrt{3}\sin(\theta + \frac{\pi}{6}) - 4\sin\theta$ で、右側の式は...

三角関数加法定理三角関数の合成数式変形
2025/6/16