与えられた積分 $\int \frac{1}{x^5} dx$ を計算しなさい。

解析学積分べき関数
2025/6/16

1. 問題の内容

与えられた積分 1x5dx\int \frac{1}{x^5} dx を計算しなさい。

2. 解き方の手順

まず、1x5\frac{1}{x^5}x5x^{-5} と書き換えます。
1x5dx=x5dx\int \frac{1}{x^5} dx = \int x^{-5} dx
次に、べき関数の積分公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C を使います。ここで、n=5n = -5 です。
n+1=5+1=4n+1 = -5+1 = -4 なので、
x5dx=x44+C\int x^{-5} dx = \frac{x^{-4}}{-4} + C
これは、
x5dx=14x4+C\int x^{-5} dx = -\frac{1}{4x^4} + C
と書き換えられます。

3. 最終的な答え

14x4+C-\frac{1}{4x^4} + C

「解析学」の関連問題

関数 $y = (2x)^x$ の微分 $\frac{dy}{dx}$ を求める問題です。

微分対数微分関数の微分連鎖律積の微分法
2025/6/16

放物線 $C: y = f(x) = x^2 - 2x + 4$ の $x > 0$ の部分に点 $P(t, t^2 - 2t + 4)$ をとる。点PにおけるCの接線を $l$ とする。 (1) $...

微分接線積分面積
2025/6/16

問題文は「次の微分係数を定義に従って求めよ。」であり、以下の2つの問題を解く必要があります。 (1) $f(x) = x^2$ の $x=2$ における微分係数 (2) $f(x) = x^2$ の ...

微分係数極限関数の微分
2025/6/16

関数 $f(x,y)$ が次のように定義されています。 $f(x,y) = \begin{cases} \frac{2x^3y - 3xy^3}{x^2 + y^2} + xy^3 & (x,y) \...

偏微分多変数関数極限偏導関数
2025/6/16

問題は、以下の関数について、導関数を定義に従って求めることです。 (1) $f(x) = x$ (2) $f(x) = 3x + 2$ (4) $f(x) = 3(x-1)^2$

導関数微分極限
2025/6/16

放物線 $C: y = -2x^2 - x + 8$ について、以下の問題を解く。 (1) 放物線Cとx軸の$x > 0$の部分との交点Aの座標と、y軸との交点Bの座標を求める。 (2) 放物線C上の...

二次関数微分最大値面積グラフ
2025/6/16

関数 $y = x^{3x}$ を対数微分法を用いて微分しなさい。ただし、$x > 0$ とする。

対数微分法関数の微分合成関数の微分積の微分
2025/6/16

$0 \le t \le 2$ を満たす実数 $t$ に対して、 $xy$ 平面上の曲線 $y = |\sqrt{x} - t|$ を $C$ とする。また、曲線 $C$ と $x$ 軸、および直線 ...

積分絶対値面積最大値最小値関数のグラフ
2025/6/16

実数 $t$ が $0 \le t \le 2$ を満たすとき、曲線 $y = \sqrt{\sqrt{x} - t}$ を $C$ とする。曲線 $C$ と $x$ 軸、および直線 $x = 4$ ...

積分面積最大値最小値置換積分
2025/6/16

与えられた関数 $y = \log{\frac{x\sqrt{2x+1}}{(2x-1)^2}}$ を簡単化します。対数の性質を利用して式を分解し、整理します。

対数関数の簡単化対数の性質
2025/6/16