与えられた行列式の値を求めよ。行列式は以下の通り。 $ \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix} $

代数学行列式ヴァンデルモンド行列式
2025/6/17

1. 問題の内容

与えられた行列式の値を求めよ。行列式は以下の通り。
1111abcda2b2c2d2a3b3c3d3 \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}

2. 解き方の手順

この行列式は、ヴァンデルモンドの行列式と呼ばれる特殊な形をしています。一般に、ヴァンデルモンドの行列式は次のように定義されます。
111x1x2xnx12x22xn2x1n1x2n1xnn1=1i<jn(xjxi) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)
今回の場合は、x1=ax_1 = a, x2=bx_2 = b, x3=cx_3 = c, x4=dx_4 = d であり、n=4n = 4 です。したがって、行列式の値は次のようになります。
(ba)(ca)(da)(cb)(db)(dc) (b - a)(c - a)(d - a)(c - b)(d - b)(d - c)

3. 最終的な答え

(ba)(ca)(da)(cb)(db)(dc)(b - a)(c - a)(d - a)(c - b)(d - b)(d - c)

「代数学」の関連問題

$x$の2次方程式 $x^2 + 2kx + 2k^2 + k - 1 = 0$ が正の解と負の解を一つずつ持つような実数 $k$ の値の範囲を求める。

二次方程式解の配置不等式解と係数の関係
2025/6/17

2次関数 $y = x^2 - 2ax + a$ に関する以下の問題を解く。ただし、$a$ は正の定数とする。 (1) $a=2$ のとき、頂点の座標を求めよ。 (2) 2次関数 $y = x^2 -...

二次関数平方完成最大値最小値グラフ
2025/6/17

2次方程式 $x^2 - (k+6)x + 2k + 12 = 0$ が、3より大きい2つの解(重解を含む)を持つような実数 $k$ の値の範囲を求める問題です。

二次方程式解の範囲判別式不等式
2025/6/17

(1) $2^x - 2^{-x} = 4$のとき、$4^x + 4^{-x}$, $2^x + 2^{-x}$, $8^x + 8^{-x}$の値を求める。 (2) 方程式 $4^x + 4^{-x...

指数方程式変数変換
2025/6/17

放物線 $y = 2x^2 - 4x$ を平行移動して、以下の放物線に重ねるには、どのように平行移動すればよいか。 (1) $y = 2x^2$ (2) $y = 2x^2 + 4x - 3$

放物線平行移動平方完成二次関数頂点
2025/6/17

与えられた10個の式を計算する問題です。

分配法則式の計算展開同類項分数
2025/6/17

食品Aと食品Bがあり、それぞれ100g中に含まれる塩分の量が、食品Aは1.5g、食品Bは2gである。食品Aと食品Bを合わせて300gにしたとき、塩分の合計が5gになる。このとき、食品Aと食品Bはそれぞ...

連立方程式文章題一次方程式
2025/6/17

問題は、与えられた2つの多項式について、足し算と引き算を行うものです。 (1) $3a+2b$ と $a-4b$ (2) $x-4y$ と $-2x+3y$ それぞれについて、足し算の結果と、左の式か...

多項式の加減同類項
2025/6/17

問題は、与えられた二つの多項式について、足し算と引き算を行うことです。具体的には、(1) $3a+2b$ と $a-4b$、(2) $x-4y$ と $-2x+3y$ のそれぞれについて、足し算(左の...

多項式加減算文字式
2025/6/17

問題は、与えられた2つの多項式に対して、足し算と引き算を行うものです。 (1) $3a+2b$ と $a-4b$ (2) $x-4y$ と $-2x+3y$ それぞれの組について、和と差を計算します。

多項式加法減法同類項
2025/6/17