1. 問題の内容
0, 1, 2, 3, 4, 5の6個の数字から異なる3つの数字を選んで3桁の整数を作る時、全部で何個の整数を作ることができるか。
2. 解き方の手順
3桁の整数を作るので、百の位、十の位、一の位の順に数字を選んでいく。
百の位には0は使えないので、1, 2, 3, 4, 5の5つの数字のどれかを選ぶことになる。したがって、百の位の選び方は5通り。
次に、十の位の選び方を考える。百の位で使った数字以外の5つの数字から1つ選ぶので、選び方は5通り。
最後に、一の位の選び方を考える。百の位と十の位で使った数字以外の4つの数字から1つ選ぶので、選び方は4通り。
したがって、3桁の整数の個数は となる。
3. 最終的な答え
100個