座標空間に平行四辺形ABCDがあり、点A、B、Cの座標が与えられています。点Dの座標(x, y, z)を求める問題です。 点A (2, 1, 5) 点B (-1, 2, 3) 点C (1, 0, -1) 点D (x, y, z)

幾何学ベクトル座標空間平行四辺形空間ベクトル
2025/6/17

1. 問題の内容

座標空間に平行四辺形ABCDがあり、点A、B、Cの座標が与えられています。点Dの座標(x, y, z)を求める問題です。
点A (2, 1, 5)
点B (-1, 2, 3)
点C (1, 0, -1)
点D (x, y, z)

2. 解き方の手順

平行四辺形ABCDであることから、ベクトルAB\overrightarrow{AB}DC\overrightarrow{DC}が等しいことを利用します。
AB=OBOA=(12,21,35)=(3,1,2)\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-1-2, 2-1, 3-5) = (-3, 1, -2)
DC=OCOD=(1x,0y,1z)\overrightarrow{DC} = \overrightarrow{OC} - \overrightarrow{OD} = (1-x, 0-y, -1-z)
したがって、AB=DC\overrightarrow{AB} = \overrightarrow{DC} より、
1x=31 - x = -3
0y=10 - y = 1
1z=2-1 - z = -2
これらの式を解きます。
x=1+3=4x = 1 + 3 = 4
y=1y = -1
z=1+2=1z = -1 + 2 = 1

3. 最終的な答え

x = 4, y = -1, z = 1
点Dの座標は (4, -1, 1)

「幾何学」の関連問題

$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\tan{\frac{\pi}{12}}$ の値を求める問題です。

三角関数タンジェント加法定理角度変換有理化
2025/6/17

$\alpha$ の動径が第2象限にあり、$\sin \alpha = \frac{2}{3}$である。また、$\beta$ の動径が第1象限にあり、$\cos \beta = \frac{3}{5}...

三角関数加法定理三角比
2025/6/17

一辺の長さが2の正四面体ABCDがある。辺BCの中点をMとする。 (1) $\cos{\angle AMD}$の値を求めよ。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求めよ。...

空間図形正四面体余弦定理ヘロンの公式体積
2025/6/17

問題(8)と(9)は、2つの直線のなす角$\theta$を求める問題です。ただし、$0 \le \theta \le \frac{\pi}{2}$とします。 (8)は、$y=\frac{1}{2}x$...

直線角度傾き三角関数
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理線分の長さ三角形の面積垂線の長さ
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理面積体積ベクトル (暗黙的)
2025/6/17

加法定理を用いて、$\cos 75^{\circ}$ の値を求める問題です。

三角関数加法定理角度
2025/6/17

三角形ABCにおいて、$AB = 5$, $BC = 7$, $CA = 8$とする。このとき、$\angle BAC$の大きさと、三角形ABCの外接円の半径Rを求める。

三角形余弦定理正弦定理外接円角度半径
2025/6/17

三角形ABCにおいて、$AB=5$, $BC=7$, $CA=8$である。このとき、$\angle BAC$の大きさと、三角形ABCの外接円の半径Rを求めよ。

三角形余弦定理正弦定理外接円角度
2025/6/17

線分ABを直径とする半円があり、AB上に点Cがある。AC = 2a, CB = 2bとする。AC, CBをそれぞれ直径とする半円を描いたとき、図の色のついた部分の面積を求める。

幾何面積半円図形
2025/6/17