定積分 $\int_{-1}^{3} \frac{1}{x^2+3} dx$ を計算します。解析学定積分積分置換積分arctan三角関数2025/6/171. 問題の内容定積分 ∫−131x2+3dx\int_{-1}^{3} \frac{1}{x^2+3} dx∫−13x2+31dx を計算します。2. 解き方の手順まず、不定積分 ∫1x2+3dx\int \frac{1}{x^2+3} dx∫x2+31dx を計算します。x=3tanθx = \sqrt{3} \tan{\theta}x=3tanθ と置換します。dx=3sec2θdθdx = \sqrt{3} \sec^2{\theta} d\thetadx=3sec2θdθ となります。したがって、∫1x2+3dx=∫13tan2θ+33sec2θdθ\int \frac{1}{x^2+3} dx = \int \frac{1}{3\tan^2{\theta}+3} \sqrt{3}\sec^2{\theta} d\theta∫x2+31dx=∫3tan2θ+313sec2θdθ=∫3sec2θ3sec2θdθ= \int \frac{\sqrt{3}\sec^2{\theta}}{3\sec^2{\theta}} d\theta=∫3sec2θ3sec2θdθ=33∫dθ= \frac{\sqrt{3}}{3} \int d\theta=33∫dθ=33θ+C= \frac{\sqrt{3}}{3} \theta + C=33θ+C=33arctanx3+C= \frac{\sqrt{3}}{3} \arctan{\frac{x}{\sqrt{3}}} + C=33arctan3x+Cしたがって、定積分は∫−131x2+3dx=[33arctanx3]−13\int_{-1}^{3} \frac{1}{x^2+3} dx = \left[\frac{\sqrt{3}}{3} \arctan{\frac{x}{\sqrt{3}}} \right]_{-1}^{3}∫−13x2+31dx=[33arctan3x]−13=33(arctan33−arctan−13)= \frac{\sqrt{3}}{3} \left( \arctan{\frac{3}{\sqrt{3}}} - \arctan{\frac{-1}{\sqrt{3}}} \right)=33(arctan33−arctan3−1)=33(arctan3−arctan−13)= \frac{\sqrt{3}}{3} \left( \arctan{\sqrt{3}} - \arctan{\frac{-1}{\sqrt{3}}} \right)=33(arctan3−arctan3−1)=33(π3−(−π6))= \frac{\sqrt{3}}{3} \left( \frac{\pi}{3} - (-\frac{\pi}{6}) \right)=33(3π−(−6π))=33(π3+π6)= \frac{\sqrt{3}}{3} \left( \frac{\pi}{3} + \frac{\pi}{6} \right)=33(3π+6π)=33(2π+π6)= \frac{\sqrt{3}}{3} \left( \frac{2\pi + \pi}{6} \right)=33(62π+π)=33(3π6)= \frac{\sqrt{3}}{3} \left( \frac{3\pi}{6} \right)=33(63π)=33(π2)= \frac{\sqrt{3}}{3} \left( \frac{\pi}{2} \right)=33(2π)=π36= \frac{\pi\sqrt{3}}{6}=6π33. 最終的な答えπ36\frac{\pi\sqrt{3}}{6}6π3