(1) ∇⋅A (発散) の計算 ∇⋅A=∂x∂(4xz2)+∂y∂(x2yz)+∂z∂(2xy3) =4z2+x2z+0=4z2+x2z 点 (1,2,1) における値は 4(1)2+(1)2(1)=4+1=5 (2) ∇×A (回転) の計算 $\nabla \times \vec{A} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
4xz^2 & x^2yz & 2xy^3
\end{vmatrix} = (\frac{\partial}{\partial y}(2xy^3) - \frac{\partial}{\partial z}(x^2yz))\vec{i} - (\frac{\partial}{\partial x}(2xy^3) - \frac{\partial}{\partial z}(4xz^2))\vec{j} + (\frac{\partial}{\partial x}(x^2yz) - \frac{\partial}{\partial y}(4xz^2))\vec{k}$
=(2x(3y2)−x2y)i−(2y3−8xz)j+(2xyz−0)k=(6xy2−x2y)i+(8xz−2y3)j+2xyzk 点 (1,2,1) における値は (6(1)(2)2−(1)2(2))i+(8(1)(1)−2(2)3)j+2(1)(2)(1)k=(24−2)i+(8−16)j+4k=22i−8j+4k=(22,−8,4) (3) ∇×(ϕA) の計算 ϕA=(2xyz)(4xz2,x2yz,2xy3)=(8x2yz3,2x3y2z2,4x2y4z) $\nabla \times (\phi \vec{A}) = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
8x^2yz^3 & 2x^3y^2z^2 & 4x^2y^4z
\end{vmatrix} = (\frac{\partial}{\partial y}(4x^2y^4z) - \frac{\partial}{\partial z}(2x^3y^2z^2))\vec{i} - (\frac{\partial}{\partial x}(4x^2y^4z) - \frac{\partial}{\partial z}(8x^2yz^3))\vec{j} + (\frac{\partial}{\partial x}(2x^3y^2z^2) - \frac{\partial}{\partial y}(8x^2yz^3))\vec{k}$
=(4x2(4y3)z−2x3y2(2z))i−(4(2x)y4z−8x2y(3z2))j+(2(3x2)y2z2−8x2z3)k =(16x2y3z−4x3y2z)i+(24x2yz2−8xy4z)j+(6x2y2z2−8x2yz3)k 点 (1,2,1) における値は (16(1)2(2)3(1)−4(1)3(2)2(1))i+(24(1)2(2)(1)2−8(1)(2)4(1))j+(6(1)2(2)2(1)2−8(1)2(2)(1)3)k=(16(8)−4(4))i+(24(2)−8(16))j+(6(4)−8(2))k=(128−16)i+(48−128)j+(24−16)k=112i−80j+8k=(112,−80,8)