$\sin\theta - \cos\theta = \frac{1}{2}$ のとき、以下の値を求めよ。 (1) $\sin\theta \cos\theta$ (2) $\sin^3\theta - \cos^3\theta$三角関数三角関数三角恒等式因数分解2025/3/91. 問題の内容sinθ−cosθ=12\sin\theta - \cos\theta = \frac{1}{2}sinθ−cosθ=21 のとき、以下の値を求めよ。(1) sinθcosθ\sin\theta \cos\thetasinθcosθ(2) sin3θ−cos3θ\sin^3\theta - \cos^3\thetasin3θ−cos3θ2. 解き方の手順(1) sinθ−cosθ=12\sin\theta - \cos\theta = \frac{1}{2}sinθ−cosθ=21 の両辺を2乗する。(sinθ−cosθ)2=(12)2(\sin\theta - \cos\theta)^2 = (\frac{1}{2})^2(sinθ−cosθ)2=(21)2sin2θ−2sinθcosθ+cos2θ=14\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}sin2θ−2sinθcosθ+cos2θ=41sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=1 より、1−2sinθcosθ=141 - 2\sin\theta\cos\theta = \frac{1}{4}1−2sinθcosθ=412sinθcosθ=1−14=342\sin\theta\cos\theta = 1 - \frac{1}{4} = \frac{3}{4}2sinθcosθ=1−41=43sinθcosθ=38\sin\theta\cos\theta = \frac{3}{8}sinθcosθ=83(2) sin3θ−cos3θ\sin^3\theta - \cos^3\thetasin3θ−cos3θ を因数分解する。sin3θ−cos3θ=(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)\sin^3\theta - \cos^3\theta = (\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta\cos\theta + \cos^2\theta)sin3θ−cos3θ=(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)sin3θ−cos3θ=(sinθ−cosθ)(1+sinθcosθ)\sin^3\theta - \cos^3\theta = (\sin\theta - \cos\theta)(1 + \sin\theta\cos\theta)sin3θ−cos3θ=(sinθ−cosθ)(1+sinθcosθ)sinθ−cosθ=12\sin\theta - \cos\theta = \frac{1}{2}sinθ−cosθ=21、sinθcosθ=38\sin\theta\cos\theta = \frac{3}{8}sinθcosθ=83 を代入する。sin3θ−cos3θ=(12)(1+38)\sin^3\theta - \cos^3\theta = (\frac{1}{2})(1 + \frac{3}{8})sin3θ−cos3θ=(21)(1+83)sin3θ−cos3θ=12(88+38)\sin^3\theta - \cos^3\theta = \frac{1}{2}(\frac{8}{8} + \frac{3}{8})sin3θ−cos3θ=21(88+83)sin3θ−cos3θ=12(118)\sin^3\theta - \cos^3\theta = \frac{1}{2}(\frac{11}{8})sin3θ−cos3θ=21(811)sin3θ−cos3θ=1116\sin^3\theta - \cos^3\theta = \frac{11}{16}sin3θ−cos3θ=16113. 最終的な答え(1)sinθcosθ=38\sin\theta\cos\theta = \frac{3}{8}sinθcosθ=83(2)sin3θ−cos3θ=1116\sin^3\theta - \cos^3\theta = \frac{11}{16}sin3θ−cos3θ=1611