与えられた和 $\sum_{k=1}^{n} \frac{2}{k^2+4k+3}$ を求める問題です。解析学級数部分分数分解望遠鏡和シグマ2025/6/221. 問題の内容与えられた和 ∑k=1n2k2+4k+3\sum_{k=1}^{n} \frac{2}{k^2+4k+3}∑k=1nk2+4k+32 を求める問題です。2. 解き方の手順まず、分母を因数分解します。k2+4k+3=(k+1)(k+3)k^2 + 4k + 3 = (k+1)(k+3)k2+4k+3=(k+1)(k+3)次に、与えられた分数を部分分数分解します。2(k+1)(k+3)=Ak+1+Bk+3\frac{2}{(k+1)(k+3)} = \frac{A}{k+1} + \frac{B}{k+3}(k+1)(k+3)2=k+1A+k+3B両辺に (k+1)(k+3)(k+1)(k+3)(k+1)(k+3) を掛けると2=A(k+3)+B(k+1)2 = A(k+3) + B(k+1)2=A(k+3)+B(k+1)k=−1k = -1k=−1 のとき 2=2A2 = 2A2=2A より A=1A = 1A=1k=−3k = -3k=−3 のとき 2=−2B2 = -2B2=−2B より B=−1B = -1B=−1したがって、2(k+1)(k+3)=1k+1−1k+3\frac{2}{(k+1)(k+3)} = \frac{1}{k+1} - \frac{1}{k+3}(k+1)(k+3)2=k+11−k+31与えられた和は、∑k=1n2k2+4k+3=∑k=1n(1k+1−1k+3)\sum_{k=1}^{n} \frac{2}{k^2+4k+3} = \sum_{k=1}^{n} \left( \frac{1}{k+1} - \frac{1}{k+3} \right)∑k=1nk2+4k+32=∑k=1n(k+11−k+31)この和は、望遠鏡和(telescoping sum)なので、∑k=1n(1k+1−1k+3)=(12−14)+(13−15)+(14−16)+⋯+(1n−1n+2)+(1n+1−1n+3)\sum_{k=1}^{n} \left( \frac{1}{k+1} - \frac{1}{k+3} \right) = \left( \frac{1}{2} - \frac{1}{4} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{4} - \frac{1}{6} \right) + \dots + \left( \frac{1}{n} - \frac{1}{n+2} \right) + \left( \frac{1}{n+1} - \frac{1}{n+3} \right)∑k=1n(k+11−k+31)=(21−41)+(31−51)+(41−61)+⋯+(n1−n+21)+(n+11−n+31)=12+13−1n+2−1n+3= \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}=21+31−n+21−n+31=56−(n+3)+(n+2)(n+2)(n+3)= \frac{5}{6} - \frac{(n+3) + (n+2)}{(n+2)(n+3)}=65−(n+2)(n+3)(n+3)+(n+2)=56−2n+5(n+2)(n+3)= \frac{5}{6} - \frac{2n+5}{(n+2)(n+3)}=65−(n+2)(n+3)2n+5=5(n+2)(n+3)−6(2n+5)6(n+2)(n+3)= \frac{5(n+2)(n+3) - 6(2n+5)}{6(n+2)(n+3)}=6(n+2)(n+3)5(n+2)(n+3)−6(2n+5)=5(n2+5n+6)−12n−306(n+2)(n+3)= \frac{5(n^2+5n+6) - 12n - 30}{6(n+2)(n+3)}=6(n+2)(n+3)5(n2+5n+6)−12n−30=5n2+25n+30−12n−306(n+2)(n+3)= \frac{5n^2 + 25n + 30 - 12n - 30}{6(n+2)(n+3)}=6(n+2)(n+3)5n2+25n+30−12n−30=5n2+13n6(n+2)(n+3)= \frac{5n^2 + 13n}{6(n+2)(n+3)}=6(n+2)(n+3)5n2+13n=n(5n+13)6(n+2)(n+3)= \frac{n(5n+13)}{6(n+2)(n+3)}=6(n+2)(n+3)n(5n+13)3. 最終的な答えn(5n+13)6(n+2)(n+3)\frac{n(5n+13)}{6(n+2)(n+3)}6(n+2)(n+3)n(5n+13)