与えられた数列の和を計算する問題です。具体的には、 $\sum_{k=1}^{n} \frac{3k+4}{k(k+1)(k+2)}$ を計算します。解析学数列級数部分分数分解和2025/6/221. 問題の内容与えられた数列の和を計算する問題です。具体的には、∑k=1n3k+4k(k+1)(k+2)\sum_{k=1}^{n} \frac{3k+4}{k(k+1)(k+2)}∑k=1nk(k+1)(k+2)3k+4を計算します。2. 解き方の手順まず、3k+4k(k+1)(k+2)\frac{3k+4}{k(k+1)(k+2)}k(k+1)(k+2)3k+4 を部分分数分解します。3k+4k(k+1)(k+2)=Ak+Bk+1+Ck+2\frac{3k+4}{k(k+1)(k+2)} = \frac{A}{k} + \frac{B}{k+1} + \frac{C}{k+2}k(k+1)(k+2)3k+4=kA+k+1B+k+2Cとおきます。両辺に k(k+1)(k+2)k(k+1)(k+2)k(k+1)(k+2) をかけると3k+4=A(k+1)(k+2)+Bk(k+2)+Ck(k+1)3k+4 = A(k+1)(k+2) + Bk(k+2) + Ck(k+1)3k+4=A(k+1)(k+2)+Bk(k+2)+Ck(k+1)となります。k=0k=0k=0 を代入すると、4=2A4 = 2A4=2A より A=2A=2A=2 です。k=−1k=-1k=−1 を代入すると、1=−B1 = -B1=−B より B=−1B=-1B=−1 です。k=−2k=-2k=−2 を代入すると、−2=2C-2 = 2C−2=2C より C=−1C=-1C=−1 です。したがって、3k+4k(k+1)(k+2)=2k−1k+1−1k+2\frac{3k+4}{k(k+1)(k+2)} = \frac{2}{k} - \frac{1}{k+1} - \frac{1}{k+2}k(k+1)(k+2)3k+4=k2−k+11−k+21となります。次に、この和を計算します。∑k=1n3k+4k(k+1)(k+2)=∑k=1n(2k−1k+1−1k+2)\sum_{k=1}^{n} \frac{3k+4}{k(k+1)(k+2)} = \sum_{k=1}^{n} \left(\frac{2}{k} - \frac{1}{k+1} - \frac{1}{k+2}\right)∑k=1nk(k+1)(k+2)3k+4=∑k=1n(k2−k+11−k+21)=∑k=1n2k−∑k=1n1k+1−∑k=1n1k+2= \sum_{k=1}^{n} \frac{2}{k} - \sum_{k=1}^{n} \frac{1}{k+1} - \sum_{k=1}^{n} \frac{1}{k+2}=∑k=1nk2−∑k=1nk+11−∑k=1nk+21=2∑k=1n1k−∑k=2n+11k−∑k=3n+21k= 2\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} - \sum_{k=3}^{n+2} \frac{1}{k}=2∑k=1nk1−∑k=2n+1k1−∑k=3n+2k1=21+22+∑k=3n2k−(12+∑k=3n1k+1n+1)−(∑k=3n1k+1n+1+1n+2)= \frac{2}{1} + \frac{2}{2} + \sum_{k=3}^{n} \frac{2}{k} - \left(\frac{1}{2} + \sum_{k=3}^{n} \frac{1}{k} + \frac{1}{n+1}\right) - \left(\sum_{k=3}^{n} \frac{1}{k} + \frac{1}{n+1} + \frac{1}{n+2}\right)=12+22+∑k=3nk2−(21+∑k=3nk1+n+11)−(∑k=3nk1+n+11+n+21)=2+1−12−1n+1−1n+1−1n+2= 2 + 1 - \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{n+2}=2+1−21−n+11−n+11−n+21=52−2n+1−1n+2= \frac{5}{2} - \frac{2}{n+1} - \frac{1}{n+2}=25−n+12−n+21=52−2(n+2)+(n+1)(n+1)(n+2)= \frac{5}{2} - \frac{2(n+2)+(n+1)}{(n+1)(n+2)}=25−(n+1)(n+2)2(n+2)+(n+1)=52−3n+5(n+1)(n+2)= \frac{5}{2} - \frac{3n+5}{(n+1)(n+2)}=25−(n+1)(n+2)3n+5=5(n+1)(n+2)−2(3n+5)2(n+1)(n+2)= \frac{5(n+1)(n+2) - 2(3n+5)}{2(n+1)(n+2)}=2(n+1)(n+2)5(n+1)(n+2)−2(3n+5)=5(n2+3n+2)−6n−102(n+1)(n+2)= \frac{5(n^2+3n+2) - 6n - 10}{2(n+1)(n+2)}=2(n+1)(n+2)5(n2+3n+2)−6n−10=5n2+15n+10−6n−102(n+1)(n+2)= \frac{5n^2 + 15n + 10 - 6n - 10}{2(n+1)(n+2)}=2(n+1)(n+2)5n2+15n+10−6n−10=5n2+9n2(n+1)(n+2)= \frac{5n^2 + 9n}{2(n+1)(n+2)}=2(n+1)(n+2)5n2+9n=n(5n+9)2(n+1)(n+2)= \frac{n(5n+9)}{2(n+1)(n+2)}=2(n+1)(n+2)n(5n+9)3. 最終的な答えn(5n+9)2(n+1)(n+2)\frac{n(5n+9)}{2(n+1)(n+2)}2(n+1)(n+2)n(5n+9)