問題は、画像に示された計算式 $9 \div 12 \times 16$ を計算することです。

算数四則演算分数計算
2025/6/23

1. 問題の内容

問題は、画像に示された計算式 9÷12×169 \div 12 \times 16 を計算することです。

2. 解き方の手順

まず、割り算を分数に書き換えます。
9÷12=9129 \div 12 = \frac{9}{12}
次に、約分をします。912=34\frac{9}{12} = \frac{3}{4}
34×16\frac{3}{4} \times 16
1616を分数で表すと161\frac{16}{1}なので、
34×161=3×164×1=484\frac{3}{4} \times \frac{16}{1} = \frac{3 \times 16}{4 \times 1} = \frac{48}{4}
484\frac{48}{4}を計算すると、1212になります。

3. 最終的な答え

12

「算数」の関連問題

与えられた数式 $-\sqrt{27} + \frac{6}{\sqrt{12}}$ を計算して、その値を求める問題です。

平方根計算有理化数式
2025/6/23

6人を次の2つの方法で分ける場合の数を求める問題です。 (1) 6人をA, B, Cの3つの部屋に2人ずつ分ける場合の数を求めます。 (2) 6人を2人ずつの3つの組に分ける場合の数を求めます。

組み合わせ場合の数重複順列二項係数
2025/6/23

与えられた分数の分母を有理化する問題です。分数は $\frac{6}{\sqrt{3}}$ です。

分数有理化平方根計算
2025/6/23

問題は、与えられた式を計算することです。特に、(3) $2\sqrt{3} + \sqrt{8} - \sqrt{27} - \sqrt{32}$ を計算します。

根号計算
2025/6/23

与えられた問題は、1から30までの自然数の二乗の和を求める問題です。つまり、以下の式を計算します。 $1^2 + 2^2 + 3^2 + ... + 30^2$

数列二乗公式
2025/6/23

問題は、数列の和 $1^2 + 2^2 + 3^2 + \dots + 20^2$ を計算することです。

数列平方数の和公式
2025/6/23

与えられた数学の問題を解き、空欄を埋める問題です。内容は、分数の小数表示、絶対値、式の計算(根号を含む)、分母の有理化、実数の整数部分と小数部分です。

数の計算平方根有理化絶対値実数
2025/6/23

与えられた4つの計算問題を解きます。 (1) $\frac{21}{\sqrt{7}} - \sqrt{175}$ (2) $\frac{1}{3\sqrt{2}} + \frac{\sqrt{2}}...

平方根有理化根号
2025/6/23

$a = 5$、 $b = -8$のとき、次の式の値をそれぞれ求める問題です。 (1) $|a| + |b|$ (2) $|a + b|$ (3) $|a| - |b|$ (4) $|a - b|$

絶対値計算
2025/6/23

画像に写っている3つの組み合わせの計算問題を解きます。 問題は次の通りです。 (5) ${}_5C_0$ (6) ${}_{10}C_{10}$ (7) ${}_{15}C_{13}$

組み合わせ二項係数階乗
2025/6/23