2種類の玉を選ぶ問題と、4枚の色紙から2枚を選ぶ問題です。 問題2: 赤、青、黄、緑、白の5種類の玉の中から2種類を選ぶとき、赤の玉を必ず選ぶ組み合わせを全て書き出す。 問題3: 赤、青、黄の4枚の色紙の中から2枚を選ぶとき、色紙の組み合わせを全て書き出す。

算数組み合わせ場合の数選ぶ
2025/6/23
はい、承知いたしました。

1. 問題の内容

2種類の玉を選ぶ問題と、4枚の色紙から2枚を選ぶ問題です。
問題2: 赤、青、黄、緑、白の5種類の玉の中から2種類を選ぶとき、赤の玉を必ず選ぶ組み合わせを全て書き出す。
問題3: 赤、青、黄の4枚の色紙の中から2枚を選ぶとき、色紙の組み合わせを全て書き出す。

2. 解き方の手順

問題2: 赤の玉を必ず選ぶので、もう一つ選ぶ玉を赤以外の玉から選ぶことになります。
赤と青、赤と黄、赤と緑、赤と白の組み合わせが考えられます。
問題3: 4枚の色紙から2枚を選ぶので、組み合わせを全て書き出します。
色紙は赤、赤、青、黄なので、以下の組み合わせが考えられます。
* 赤、赤
* 赤、青
* 赤、黄
* 赤、青
* 赤、黄
* 青、黄

3. 最終的な答え

問題2:
(赤, 青), (赤, 黄), (赤, 緑), (赤, 白)
問題3:
(赤, 赤), (赤, 青), (赤, 黄), (赤, 青), (赤, 黄), (青, 黄)
または
(赤1, 赤2), (赤1, 青), (赤1, 黄), (赤2, 青), (赤2, 黄), (青, 黄)
(赤1と赤2は、それぞれ別の赤の色紙を示す)

「算数」の関連問題

与えられた数式 $-\sqrt{27} + \frac{6}{\sqrt{12}}$ を計算して、その値を求める問題です。

平方根計算有理化数式
2025/6/23

6人を次の2つの方法で分ける場合の数を求める問題です。 (1) 6人をA, B, Cの3つの部屋に2人ずつ分ける場合の数を求めます。 (2) 6人を2人ずつの3つの組に分ける場合の数を求めます。

組み合わせ場合の数重複順列二項係数
2025/6/23

与えられた分数の分母を有理化する問題です。分数は $\frac{6}{\sqrt{3}}$ です。

分数有理化平方根計算
2025/6/23

問題は、与えられた式を計算することです。特に、(3) $2\sqrt{3} + \sqrt{8} - \sqrt{27} - \sqrt{32}$ を計算します。

根号計算
2025/6/23

与えられた問題は、1から30までの自然数の二乗の和を求める問題です。つまり、以下の式を計算します。 $1^2 + 2^2 + 3^2 + ... + 30^2$

数列二乗公式
2025/6/23

問題は、数列の和 $1^2 + 2^2 + 3^2 + \dots + 20^2$ を計算することです。

数列平方数の和公式
2025/6/23

与えられた数学の問題を解き、空欄を埋める問題です。内容は、分数の小数表示、絶対値、式の計算(根号を含む)、分母の有理化、実数の整数部分と小数部分です。

数の計算平方根有理化絶対値実数
2025/6/23

与えられた4つの計算問題を解きます。 (1) $\frac{21}{\sqrt{7}} - \sqrt{175}$ (2) $\frac{1}{3\sqrt{2}} + \frac{\sqrt{2}}...

平方根有理化根号
2025/6/23

$a = 5$、 $b = -8$のとき、次の式の値をそれぞれ求める問題です。 (1) $|a| + |b|$ (2) $|a + b|$ (3) $|a| - |b|$ (4) $|a - b|$

絶対値計算
2025/6/23

画像に写っている3つの組み合わせの計算問題を解きます。 問題は次の通りです。 (5) ${}_5C_0$ (6) ${}_{10}C_{10}$ (7) ${}_{15}C_{13}$

組み合わせ二項係数階乗
2025/6/23