$\frac{\pi}{4} \le x \le \frac{5\pi}{4}$ の範囲で、$y = \sin x$ と $y = \cos x$ で囲まれた部分の面積 $S$ を求める問題です。
2025/3/29
1. 問題の内容
の範囲で、 と で囲まれた部分の面積 を求める問題です。
2. 解き方の手順
まず、 と の交点を求めます。 を満たす は、 ( は整数) です。与えられた範囲 における交点は、 と です。
次に、 の範囲で と の大小関係を調べます。
において、 です。したがって、面積 は次の積分で計算できます。
積分を実行します。
, , , なので、
3. 最終的な答え
ア=2, イ=2