自然数の列が、以下のように群に分けられています。第$n$群には$2^{n-1}$個の数が入ります。 1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16,... (1) $n \geq 2$のとき、第$n$群の最初の数を$n$の式で表してください。 (2) 第$n$群に入るすべての数の和$S$を求めてください。

数論数列等比数列等差数列群数列自然数
2025/6/24

1. 問題の内容

自然数の列が、以下のように群に分けられています。第nn群には2n12^{n-1}個の数が入ります。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16,...
(1) n2n \geq 2のとき、第nn群の最初の数をnnの式で表してください。
(2) 第nn群に入るすべての数の和SSを求めてください。

2. 解き方の手順

(1) 第nn群の最初の数を求める。
nn群の最初の数は、第(n1)(n-1)群までの項数に1を加えたものです。
第1群から第(n1)(n-1)群までの項数は、
20+21+22++2n22^0 + 2^1 + 2^2 + \cdots + 2^{n-2}
これは初項1、公比2の等比数列の和なので、
1(2n11)21=2n11\frac{1(2^{n-1} - 1)}{2-1} = 2^{n-1} - 1
したがって、第nn群の最初の数は、
2n11+1=2n12^{n-1} - 1 + 1 = 2^{n-1}
(2) 第nn群に入るすべての数の和SSを求める。
nn群は、2n12^{n-1}から始まり、項数は2n12^{n-1}個です。
したがって、第nn群の最後の数は、
2n1+(2n11)=22n11=2n12^{n-1} + (2^{n-1} - 1) = 2 \cdot 2^{n-1} - 1 = 2^n - 1
nn群は等差数列なので、その和SSは、
S=2n12(2n1+2n1)S = \frac{2^{n-1}}{2}(2^{n-1} + 2^n - 1)
S=2n2(2n1+22n11)S = 2^{n-2}(2^{n-1} + 2 \cdot 2^{n-1} - 1)
S=2n2(32n11)S = 2^{n-2}(3 \cdot 2^{n-1} - 1)

3. 最終的な答え

(1) 第nn群の最初の数: 2n12^{n-1}
(2) 第nn群に入るすべての数の和SS: 2n2(32n11)2^{n-2}(3 \cdot 2^{n-1} - 1)
あるいは 22n332n22^{2n-3} \cdot 3 - 2^{n-2}

「数論」の関連問題

整数 $n$ について、$n^2 + n$ が2の倍数であることを示す問題です。

整数の性質倍数因数分解数学的証明
2025/6/25

整数 $n$ が与えられたとき、式 $2n$ がどんな数を表すかを答える問題です。

整数偶数数の性質
2025/6/25

数列$\{a_n\}$が、$a_1=2$, $a_2=3$, $a_{n+2}=a_{n+1}+a_n$($n=1, 2, 3, \dots$)と定義されているとき、以下の問いに答える問題です。 (1...

数列漸化式数学的帰納法素因数分解整数の性質フィボナッチ数列
2025/6/24

$p$, $q$, $r$ は互いに異なる素数であり、$l$, $m$, $n$ は自然数である。このとき、整数 $p^l q^m r^n$ のすべての約数の和が $\frac{p^{l+1}-1}{...

約数素数等比数列
2025/6/24

$\sqrt{2}$ が無理数であることを用いて、以下の数が無理数であることを証明します。 (1) $2-\sqrt{2}$ (2) $\sqrt{8}$

無理数背理法平方根証明
2025/6/24

実数 $x$ が正の無理数であるとき、$\sqrt{x}$ が無理数であることを証明する問題です。

無理数有理数背理法平方根証明
2025/6/24

すべての自然数 $n$ について、次の不等式が成り立つことを示せ。 $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \geq \frac{2...

不等式数学的帰納法調和級数
2025/6/24

すべての自然数 $n$ について、以下の不等式が成り立つことを示せ。 $$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge \frac{2...

不等式数学的帰納法調和数列
2025/6/24

(1) 2つの奇数の積が偶数になるか奇数になるか、2つの偶数の積、偶数と奇数の積について考える問題。 (2) 大小2つのサイコロを投げ、大きいサイコロの出目を $a$ 、小さいサイコロの出目を $b$...

整数の性質確率サイコロ積の性質
2025/6/24

数列 $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac...

数列分数一般項
2025/6/24