与えられた不等式 $4x - 7 < 2x + 3$ を解き、$x$ の範囲を求める問題です。代数学不等式一次不等式解法2025/6/241. 問題の内容与えられた不等式 4x−7<2x+34x - 7 < 2x + 34x−7<2x+3 を解き、xxx の範囲を求める問題です。2. 解き方の手順不等式を解くために、まずxxxの項を左辺に、定数項を右辺に集めます。ステップ1:両辺から 2x2x2x を引きます。4x−7−2x<2x+3−2x4x - 7 - 2x < 2x + 3 - 2x4x−7−2x<2x+3−2x2x−7<32x - 7 < 32x−7<3ステップ2:両辺に 777 を足します。2x−7+7<3+72x - 7 + 7 < 3 + 72x−7+7<3+72x<102x < 102x<10ステップ3:両辺を 222 で割ります。2x2<102\frac{2x}{2} < \frac{10}{2}22x<210x<5x < 5x<53. 最終的な答えx<5x < 5x<5