極方程式 $r \cos^2 \theta = \sin \theta$ を直交座標の方程式 $y = ア x^イ$ の形で表す問題です。アとイを求める必要があります。

幾何学極座標直交座標座標変換方程式
2025/3/30

1. 問題の内容

極方程式 rcos2θ=sinθr \cos^2 \theta = \sin \theta を直交座標の方程式 y=xy = ア x^イ の形で表す問題です。アとイを求める必要があります。

2. 解き方の手順

極座標と直交座標の変換公式は以下の通りです。
x=rcosθx = r \cos \theta
y=rsinθy = r \sin \theta
与えられた極方程式 rcos2θ=sinθr \cos^2 \theta = \sin \theta の両辺に rr をかけます。
r2cos2θ=rsinθr^2 \cos^2 \theta = r \sin \theta
ここで、x=rcosθx = r \cos \thetay=rsinθy = r \sin \theta を用いると、
(rcosθ)2=rsinθ(r \cos \theta)^2 = r \sin \theta
x2=yx^2 = y
したがって、y=x2y = x^2となります。
これはy=xy=アx^イの形なので、=1ア=1=2イ=2とわかります。

3. 最終的な答え

ア:1
イ:2

「幾何学」の関連問題

原点Oと放物線 $y=x^2$ 上の異なる2点A, Bがある。線分OAと線分OBが直交するとき、線分ABの中点の軌跡の方程式を求める。

軌跡放物線直交座標
2025/6/3

$\triangle OAB$ において、辺 $OB$ を $2:1$ に内分する点を $C$、線分 $AC$ の中点を $M$ とする。直線 $OM$ と辺 $AB$ の交点を $D$ とする。 (...

ベクトル内分線分の比
2025/6/3

$\triangle ABC$において、$AB=12, BC=7, CA=9$である。辺BC上に点Dを$BD=4$を満たすようにとる。点Aを通り、線分ADに垂直な直線と辺BCの延長との交点をEとする。...

三角形面積比方べきの定理メネラウスの定理相似
2025/6/3

三角形ABCと点Pに対して、等式 $3\vec{AP} + 4\vec{BP} + 5\vec{CP} = \vec{0}$ が成り立つ時、 (1) 点Pは三角形ABCに対してどのような位置にあるか。...

ベクトル三角形内分点面積比
2025/6/3

三角形ABCにおいて、$AB=12$, $BC=7$, $CA=9$である。辺BC上に点Dを$BD=4$を満たすように取る。点Aを通り線分ADに垂直な直線と辺BCの延長との交点をEとする。このとき、$...

三角形相似面積辺の長さ直角
2025/6/3

三角形OABにおいて、辺OAを2:1に内分する点をC、辺OBの中点をDとする。線分ADとBCの交点をPとする。 ベクトル$\vec{OP}$を、実数$m, n$を用いて$\vec{OP} = m\ve...

ベクトル内分線分の交点
2025/6/3

一辺の長さが $a$ の正三角形 $D_0$ から出発して、以下の手順で多角形 $D_1, D_2, ..., D_n$ を定義します。 (i) $D_{n-1}$ の1辺 $AB$ を3等分し、その...

フラクタル正三角形周の長さ面積極限等比数列
2025/6/3

三角形ABCの内部の点Pについて、$\overrightarrow{AP} + 3\overrightarrow{BP} + 4\overrightarrow{CP} = \vec{0}$が成り立つと...

ベクトル三角形ベクトルの内分線分の比
2025/6/3

三角形ABCにおいて、AB=6, BC=5, CA=7とする。三角形ABCの内接円の中心をI、内接円と辺BCとの接点をD、AIの延長と辺BCとの交点をPとするとき、ベクトルAD, AP, AIをそれぞ...

ベクトル三角形内接円面積二等分線
2025/6/3

点A(4, 2), 点B(-2, 4)と、円 $x^2 + y^2 = 4$ 上を動く点Cを頂点とする△ABCの重心の軌跡を求める。

軌跡重心座標平面
2025/6/3