与えられた複素数の積 $(3-8i)(4+2i)$ を計算します。

代数学複素数複素数の積代数
2025/6/25

1. 問題の内容

与えられた複素数の積 (38i)(4+2i)(3-8i)(4+2i) を計算します。

2. 解き方の手順

複素数の積を展開し、i2=1i^2 = -1 を利用して実部と虚部をまとめます。
\begin{align*}
(3-8i)(4+2i) &= 3(4) + 3(2i) - 8i(4) - 8i(2i) \\
&= 12 + 6i - 32i - 16i^2 \\
&= 12 - 26i - 16(-1) \\
&= 12 - 26i + 16 \\
&= 28 - 26i
\end{align*}

3. 最終的な答え

2826i28 - 26i

「代数学」の関連問題

3つの2次関数 $y=x^2+ax+b$、 $y=x^2+cx+d$、 $y=x^2+ex+f$ が与えられています。 これらのグラフの位置関係が図示されており、以下の問いに答えます。 (1)(i) ...

二次関数グラフ平行移動関数の決定
2025/6/26

問題15:数列 4, 18, 48, 100, 180, ... の一般項 $a_n$ と、初項から第 $n$ 項までの和 $S_n$ を求める。 問題16:$\sum_{k=1}^{n} a_k =...

数列級数一般項階差数列
2025/6/26

以下の2つの式を因数分解します。 (1) $(a-2)x + 3(2-a)$ (2) $(a-b)x - (b-a)y$

因数分解多項式式変形
2025/6/26

$n \ge 4$ に対して、$n$次正方行列の行列式($n$次行列式)がどうなるかを考え、項数を求め、$n=4$の場合に展開式を書き出す。

行列式行列線形代数置換
2025/6/26

線形変換 $f: \mathbb{R}^3 \to \mathbb{R}^3$ が与えられています。 $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \b...

線形変換行列表現正則変換逆行列線形代数
2025/6/26

3次の正方行列 $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & a \\ 2 & a & a \end{pmatrix}$ が逆行列を持たないような $a$ の値を...

線形代数行列式逆行列二次方程式
2025/6/26

$\frac{1+x}{2+3x}$ を、$-\frac{【1】}{(【2】+【3】x)^{【4】}}$ の形式で表す問題です。

分数式部分分数分解微分
2025/6/26

多項式 $P(x) = ax^3 + bx^2 + 3x - 5$ を $x-2$ で割った余りが $5$ で、$x+3$ で割った余りが $-50$ であるとき、定数 $a$ と $b$ の値を求め...

多項式剰余の定理連立方程式
2025/6/26

3次正方行列 $A$, $B$, $C$ が与えられている。 $A = \begin{pmatrix} 1 & 0 & 0 \\ \cos\theta & \sin\theta & 0 \\ \cos...

行列行列式三角関数加法定理
2025/6/26

画像に書かれた5つの数式を解きます。

一次方程式二次方程式因数分解方程式の解
2025/6/26