解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

与えられた関数 $f(x)$ が、指定された $x$ の値において連続であるか不連続であるかを調べる問題です。ただし、$[x]$ はガウス記号を表し、$x$ を超えない最大の整数を表します。以下の6つ...

関数の連続性極限ガウス記号
2025/6/19

(5) $\int_{0}^{\frac{3\pi}{2}} \cos^{7}x \, dx$ (6) $\int_{\pi}^{2\pi} \sin^{8}x \, dx$ (7) $\int_{0...

積分定積分三角関数部分積分
2025/6/19

## 問題の解答

定積分三角関数部分積分置換積分arcsinarctan
2025/6/19

次の3つの不定積分を求める問題です。 (1) $\int x^2 \sqrt{x^3 + 2} dx$ (2) $\int \sin^3 x \cos x dx$ (3) $\int \frac{\l...

積分不定積分置換積分
2025/6/19

次の関数について、$n=4$ までの有限マクローリン展開を求めます。 (1) $\sin x$ (2) $\sqrt{1+x}$ (3) $x\sin x$ (4) $\frac{x}{1+x}$

マクローリン展開テイラー展開関数べき級数
2025/6/19

以下の3つの常用対数の値を、常用対数表を用いて求める問題です。 (1) $\log_{10}4.32$ (2) $\log_{10}8.58$ (3) $\log_{10}6$

対数常用対数対数表
2025/6/19

問題は、次の2つの関数 $\sin x$ と $\sqrt{1+x}$ の有限マクローリン展開を、$n=4$ のときまで書き表すことです。

マクローリン展開テイラー展開三角関数べき級数
2025/6/19

与えられた関数 $f(x)$ が、指定された $x$ の値において連続であるか不連続であるかを調べます。ただし、$[ \ ]$ はガウス記号(床関数)を表します。

関数の連続性極限ガウス記号床関数
2025/6/19

関数 $y = \tan x$ のマクローリン展開を $n=4$ まで求めるとき、 $y = x + \frac{x^3}{ア} + \frac{\sin \theta x(イ + \sin^2 \t...

マクローリン展開三角関数微分テイラー展開
2025/6/19

関数 $y = \cos x$ のマクローリン展開を $n=4$ まで行う。展開の結果を $y = 1 - \frac{x^2}{\text{ア}!} + \frac{\text{イ}\theta x...

マクローリン展開テイラー展開三角関数微分剰余項
2025/6/19