関数 $f(x, y) = 4(x^2 + y^2) \cos^3(x+2y)$ をマクローリン展開します。解析学多変数関数マクローリン展開偏微分2025/6/251. 問題の内容関数 f(x,y)=4(x2+y2)cos3(x+2y)f(x, y) = 4(x^2 + y^2) \cos^3(x+2y)f(x,y)=4(x2+y2)cos3(x+2y) をマクローリン展開します。2. 解き方の手順マクローリン展開は、多変数関数のテイラー展開において、展開の中心を原点((0,0))としたものです。つまり、関数 f(x,y)f(x, y)f(x,y) を (x,y)=(0,0)(x, y) = (0, 0)(x,y)=(0,0) のまわりでテイラー展開します。f(x,y)=f(0,0)+∂f∂x(0,0)x+∂f∂y(0,0)y+12!(∂2f∂x2(0,0)x2+2∂2f∂x∂y(0,0)xy+∂2f∂y2(0,0)y2)+⋯f(x, y) = f(0, 0) + \frac{\partial f}{\partial x}(0, 0)x + \frac{\partial f}{\partial y}(0, 0)y + \frac{1}{2!}\left(\frac{\partial^2 f}{\partial x^2}(0, 0)x^2 + 2\frac{\partial^2 f}{\partial x \partial y}(0, 0)xy + \frac{\partial^2 f}{\partial y^2}(0, 0)y^2\right) + \cdotsf(x,y)=f(0,0)+∂x∂f(0,0)x+∂y∂f(0,0)y+2!1(∂x2∂2f(0,0)x2+2∂x∂y∂2f(0,0)xy+∂y2∂2f(0,0)y2)+⋯ここで、f(x,y)=4(x2+y2)cos3(x+2y)f(x, y) = 4(x^2 + y^2) \cos^3(x+2y)f(x,y)=4(x2+y2)cos3(x+2y) なので、f(0,0)=4(02+02)cos3(0+2⋅0)=0f(0, 0) = 4(0^2 + 0^2) \cos^3(0+2\cdot 0) = 0f(0,0)=4(02+02)cos3(0+2⋅0)=0次に、偏微分を計算します。∂f∂x=4(2xcos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y)))\frac{\partial f}{\partial x} = 4(2x \cos^3(x+2y) + (x^2+y^2)3\cos^2(x+2y)(-\sin(x+2y)))∂x∂f=4(2xcos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y)))∂f∂y=4(2ycos3(x+2y)+(x2+y2)3cos2(x+2y)(−2sin(x+2y)))\frac{\partial f}{\partial y} = 4(2y \cos^3(x+2y) + (x^2+y^2)3\cos^2(x+2y)(-2\sin(x+2y)))∂y∂f=4(2ycos3(x+2y)+(x2+y2)3cos2(x+2y)(−2sin(x+2y)))したがって、∂f∂x(0,0)=4(0cos3(0)+(0+0)3cos2(0)(−sin(0)))=0\frac{\partial f}{\partial x}(0, 0) = 4(0 \cos^3(0) + (0+0)3\cos^2(0)(-\sin(0))) = 0∂x∂f(0,0)=4(0cos3(0)+(0+0)3cos2(0)(−sin(0)))=0∂f∂y(0,0)=4(0cos3(0)+(0+0)3cos2(0)(−2sin(0)))=0\frac{\partial f}{\partial y}(0, 0) = 4(0 \cos^3(0) + (0+0)3\cos^2(0)(-2\sin(0))) = 0∂y∂f(0,0)=4(0cos3(0)+(0+0)3cos2(0)(−2sin(0)))=0次に、2階偏微分を計算します。∂2f∂x2=4(2cos3(x+2y)−6xcos2(x+2y)sin(x+2y)−6xcos2(x+2y)sin(x+2y)−3(x2+y2)cos(x+2y)sin(x+2y)−3(x2+y2)cos(x+2y)sin(x+2y)+3(x2+y2)cos2(x+2y))\frac{\partial^2 f}{\partial x^2} = 4(2\cos^3(x+2y) - 6x\cos^2(x+2y)\sin(x+2y) - 6x\cos^2(x+2y)\sin(x+2y) -3(x^2+y^2)\cos(x+2y)\sin(x+2y) -3(x^2+y^2) \cos(x+2y) \sin(x+2y)+3(x^2+y^2) \cos^2(x+2y) )∂x2∂2f=4(2cos3(x+2y)−6xcos2(x+2y)sin(x+2y)−6xcos2(x+2y)sin(x+2y)−3(x2+y2)cos(x+2y)sin(x+2y)−3(x2+y2)cos(x+2y)sin(x+2y)+3(x2+y2)cos2(x+2y))∂2f∂y2=4(2cos3(x+2y)−12ycos2(x+2y)sin(x+2y)−12ycos2(x+2y)sin(x+2y)−12(x2+y2)cos(x+2y)sin(x+2y)−12(x2+y2)cos(x+2y)sin(x+2y)+12(x2+y2)cos2(x+2y))\frac{\partial^2 f}{\partial y^2} = 4(2\cos^3(x+2y) - 12y\cos^2(x+2y)\sin(x+2y) - 12y\cos^2(x+2y)\sin(x+2y) -12(x^2+y^2)\cos(x+2y)\sin(x+2y) -12(x^2+y^2) \cos(x+2y) \sin(x+2y)+12(x^2+y^2) \cos^2(x+2y) )∂y2∂2f=4(2cos3(x+2y)−12ycos2(x+2y)sin(x+2y)−12ycos2(x+2y)sin(x+2y)−12(x2+y2)cos(x+2y)sin(x+2y)−12(x2+y2)cos(x+2y)sin(x+2y)+12(x2+y2)cos2(x+2y))∂2f∂x∂y=4(−6ycos2(x+2y)sin(x+2y)−3ycos2(x+2y)sin(x+2y)−3(x2+y2)cos2(x+2y)sin(x+2y)−6(x2+y2)cos(x+2y)(−sin(x+2y))−3(x2+y2))\frac{\partial^2 f}{\partial x \partial y} = 4(-6y\cos^2(x+2y)\sin(x+2y)-3y\cos^2(x+2y)\sin(x+2y)-3(x^2+y^2)\cos^2(x+2y)\sin(x+2y)-6(x^2+y^2)cos(x+2y)(-sin(x+2y))-3(x^2+y^2))∂x∂y∂2f=4(−6ycos2(x+2y)sin(x+2y)−3ycos2(x+2y)sin(x+2y)−3(x2+y2)cos2(x+2y)sin(x+2y)−6(x2+y2)cos(x+2y)(−sin(x+2y))−3(x2+y2))∂2f∂x2(0,0)=4(2cos3(0)+0)=8\frac{\partial^2 f}{\partial x^2}(0, 0) = 4(2\cos^3(0) + 0) = 8∂x2∂2f(0,0)=4(2cos3(0)+0)=8∂2f∂y2(0,0)=4(2cos3(0)+0)=8\frac{\partial^2 f}{\partial y^2}(0, 0) = 4(2\cos^3(0) + 0) = 8∂y2∂2f(0,0)=4(2cos3(0)+0)=8∂2f∂x∂y(0,0)=0\frac{\partial^2 f}{\partial x \partial y}(0, 0) = 0∂x∂y∂2f(0,0)=0したがって、マクローリン展開の2次の項まで考えると、f(x,y)≈0+0x+0y+12(8x2+0xy+8y2)=4(x2+y2)f(x, y) \approx 0 + 0x + 0y + \frac{1}{2}(8x^2 + 0xy + 8y^2) = 4(x^2 + y^2)f(x,y)≈0+0x+0y+21(8x2+0xy+8y2)=4(x2+y2)3. 最終的な答えf(x,y)≈4(x2+y2)f(x,y) \approx 4(x^2+y^2)f(x,y)≈4(x2+y2)