関数 $f(x, y) = 4(x^2 + y^2) \cos^3(x + 2y)$ をマクローリン展開する。解析学多変数関数マクローリン展開偏微分テイラー展開2025/6/251. 問題の内容関数 f(x,y)=4(x2+y2)cos3(x+2y)f(x, y) = 4(x^2 + y^2) \cos^3(x + 2y)f(x,y)=4(x2+y2)cos3(x+2y) をマクローリン展開する。2. 解き方の手順マクローリン展開は、多変数関数のテイラー展開の中心を原点 (0, 0) にとったものです。つまり、関数 f(x,y)f(x, y)f(x,y) のマクローリン展開は、f(x,y)=∑n=0∞1n!(x∂∂x+y∂∂y)nf(0,0)f(x, y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left( x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)^n f(0, 0)f(x,y)=∑n=0∞n!1(x∂x∂+y∂y∂)nf(0,0)となります。まず、f(x,y)f(x,y)f(x,y)のいくつかの偏導関数を計算します。f(0,0)=4(02+02)cos3(0+2(0))=0f(0,0) = 4(0^2+0^2) \cos^3(0+2(0)) = 0f(0,0)=4(02+02)cos3(0+2(0))=0cos3(x+2y)\cos^3(x+2y)cos3(x+2y) を cos(x+2y)\cos(x+2y)cos(x+2y) の3乗と見て、積の微分を使って偏微分します。∂f∂x=4(2xcos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y)))\frac{\partial f}{\partial x} = 4(2x \cos^3(x+2y) + (x^2+y^2)3\cos^2(x+2y)(-\sin(x+2y)))∂x∂f=4(2xcos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y)))∂f∂y=4(2ycos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y))2)\frac{\partial f}{\partial y} = 4(2y \cos^3(x+2y) + (x^2+y^2)3\cos^2(x+2y)(-\sin(x+2y))2)∂y∂f=4(2ycos3(x+2y)+(x2+y2)3cos2(x+2y)(−sin(x+2y))2)よって∂f∂x(0,0)=4(0+0)=0\frac{\partial f}{\partial x}(0,0) = 4(0 + 0) = 0∂x∂f(0,0)=4(0+0)=0∂f∂y(0,0)=4(0+0)=0\frac{\partial f}{\partial y}(0,0) = 4(0 + 0) = 0∂y∂f(0,0)=4(0+0)=0次に二階偏導関数を計算します。∂2f∂x2=4(2cos3(x+2y)+2x⋅3cos2(x+2y)(−sin(x+2y))+2x⋅3cos2(x+2y)(−sin(x+2y))+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))+3cos2(x+2y)(−cos(x+2y))})\frac{\partial^2 f}{\partial x^2} = 4(2\cos^3(x+2y) + 2x \cdot 3\cos^2(x+2y)(-\sin(x+2y)) + 2x \cdot 3\cos^2(x+2y)(-\sin(x+2y)) + (x^2+y^2) \{6\cos(x+2y)(-\sin(x+2y))(-\sin(x+2y)) + 3\cos^2(x+2y)(-\cos(x+2y)) \} )∂x2∂2f=4(2cos3(x+2y)+2x⋅3cos2(x+2y)(−sin(x+2y))+2x⋅3cos2(x+2y)(−sin(x+2y))+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))+3cos2(x+2y)(−cos(x+2y))})∂2f∂y2=4(2cos3(x+2y)+2y⋅3cos2(x+2y)(−sin(x+2y))2+2y⋅3cos2(x+2y)(−sin(x+2y))2+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))4+3cos2(x+2y)(−cos(x+2y))4})\frac{\partial^2 f}{\partial y^2} = 4(2\cos^3(x+2y) + 2y \cdot 3\cos^2(x+2y)(-\sin(x+2y))2 + 2y \cdot 3\cos^2(x+2y)(-\sin(x+2y))2 + (x^2+y^2) \{6\cos(x+2y)(-\sin(x+2y))(-\sin(x+2y))4 + 3\cos^2(x+2y)(-\cos(x+2y))4 \} )∂y2∂2f=4(2cos3(x+2y)+2y⋅3cos2(x+2y)(−sin(x+2y))2+2y⋅3cos2(x+2y)(−sin(x+2y))2+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))4+3cos2(x+2y)(−cos(x+2y))4})∂2f∂x∂y=4(2y⋅3cos2(x+2y)(−sin(x+2y))+2x⋅3cos2(x+2y)(−sin(x+2y))2+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))2+3cos2(x+2y)(−cos(x+2y))2})\frac{\partial^2 f}{\partial x \partial y} = 4(2y \cdot 3\cos^2(x+2y)(-\sin(x+2y)) + 2x \cdot 3\cos^2(x+2y)(-\sin(x+2y))2 + (x^2+y^2) \{6\cos(x+2y)(-\sin(x+2y))(-\sin(x+2y))2 + 3\cos^2(x+2y)(-\cos(x+2y))2 \} )∂x∂y∂2f=4(2y⋅3cos2(x+2y)(−sin(x+2y))+2x⋅3cos2(x+2y)(−sin(x+2y))2+(x2+y2){6cos(x+2y)(−sin(x+2y))(−sin(x+2y))2+3cos2(x+2y)(−cos(x+2y))2})∂2f∂x2(0,0)=4(2+0+0+0)=8\frac{\partial^2 f}{\partial x^2}(0,0) = 4(2+0+0+0) = 8∂x2∂2f(0,0)=4(2+0+0+0)=8∂2f∂y2(0,0)=4(2+0+0+0)=8\frac{\partial^2 f}{\partial y^2}(0,0) = 4(2+0+0+0) = 8∂y2∂2f(0,0)=4(2+0+0+0)=8∂2f∂x∂y(0,0)=0\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0∂x∂y∂2f(0,0)=0したがって、2次の項までマクローリン展開すると、f(x,y)≈f(0,0)+x∂f∂x(0,0)+y∂f∂y(0,0)+12(x2∂2f∂x2(0,0)+2xy∂2f∂x∂y(0,0)+y2∂2f∂y2(0,0))f(x, y) \approx f(0,0) + x\frac{\partial f}{\partial x}(0,0) + y\frac{\partial f}{\partial y}(0,0) + \frac{1}{2} (x^2 \frac{\partial^2 f}{\partial x^2}(0,0) + 2xy \frac{\partial^2 f}{\partial x \partial y}(0,0) + y^2 \frac{\partial^2 f}{\partial y^2}(0,0))f(x,y)≈f(0,0)+x∂x∂f(0,0)+y∂y∂f(0,0)+21(x2∂x2∂2f(0,0)+2xy∂x∂y∂2f(0,0)+y2∂y2∂2f(0,0))=0+0+0+12(x2⋅8+2xy⋅0+y2⋅8)=4x2+4y2= 0 + 0 + 0 + \frac{1}{2}(x^2 \cdot 8 + 2xy \cdot 0 + y^2 \cdot 8) = 4x^2 + 4y^2=0+0+0+21(x2⋅8+2xy⋅0+y2⋅8)=4x2+4y2.ここでcos3(x+2y)\cos^3(x+2y)cos3(x+2y)をテーラー展開します。cos(x+2y)≈1−(x+2y)22+⋯\cos(x+2y) \approx 1 - \frac{(x+2y)^2}{2} + \cdotscos(x+2y)≈1−2(x+2y)2+⋯cos3(x+2y)≈(1−(x+2y)22)3≈1−3(x+2y)22+⋯\cos^3(x+2y) \approx (1 - \frac{(x+2y)^2}{2})^3 \approx 1 - \frac{3(x+2y)^2}{2} + \cdotscos3(x+2y)≈(1−2(x+2y)2)3≈1−23(x+2y)2+⋯f(x,y)=4(x2+y2)(1−3(x+2y)22)=4(x2+y2)(1−3(x2+4xy+4y2)2)=4(x2+y2)−6(x2+y2)(x2+4xy+4y2)+⋯f(x,y) = 4(x^2+y^2) (1 - \frac{3(x+2y)^2}{2}) = 4(x^2+y^2) (1-\frac{3(x^2+4xy+4y^2)}{2}) = 4(x^2+y^2) - 6(x^2+y^2)(x^2+4xy+4y^2) + \cdotsf(x,y)=4(x2+y2)(1−23(x+2y)2)=4(x2+y2)(1−23(x2+4xy+4y2))=4(x2+y2)−6(x2+y2)(x2+4xy+4y2)+⋯=4x2+4y2−6(x4+4x3y+4x2y2+y2x2+4xy3+4y4)+⋯= 4x^2+4y^2 - 6(x^4 + 4x^3y + 4x^2y^2 + y^2x^2 + 4xy^3 + 4y^4) + \cdots=4x2+4y2−6(x4+4x3y+4x2y2+y2x2+4xy3+4y4)+⋯=4x2+4y2−6x4−24x3y−30x2y2−24xy3−24y4+⋯= 4x^2 + 4y^2 - 6x^4 - 24x^3y - 30x^2y^2 - 24xy^3 - 24y^4 + \cdots=4x2+4y2−6x4−24x3y−30x2y2−24xy3−24y4+⋯3. 最終的な答えf(x,y)≈4x2+4y2−6x4−24x3y−30x2y2−24xy3−24y4+⋯f(x, y) \approx 4x^2 + 4y^2 - 6x^4 - 24x^3y - 30x^2y^2 - 24xy^3 - 24y^4 + \cdotsf(x,y)≈4x2+4y2−6x4−24x3y−30x2y2−24xy3−24y4+⋯