$x = \frac{4}{\sqrt{6}+\sqrt{2}}$、 $y = \frac{4}{\sqrt{6}-\sqrt{2}}$であるとき、$x^2+xy+y^2$と$x^3+x^2y+xy^2+y^3$の値を求めよ。代数学式の計算有理化展開平方根因数分解2025/6/261. 問題の内容x=46+2x = \frac{4}{\sqrt{6}+\sqrt{2}}x=6+24、 y=46−2y = \frac{4}{\sqrt{6}-\sqrt{2}}y=6−24であるとき、x2+xy+y2x^2+xy+y^2x2+xy+y2とx3+x2y+xy2+y3x^3+x^2y+xy^2+y^3x3+x2y+xy2+y3の値を求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化する。x=46+2=4(6−2)(6+2)(6−2)=4(6−2)6−2=4(6−2)4=6−2x = \frac{4}{\sqrt{6}+\sqrt{2}} = \frac{4(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})} = \frac{4(\sqrt{6}-\sqrt{2})}{6-2} = \frac{4(\sqrt{6}-\sqrt{2})}{4} = \sqrt{6}-\sqrt{2}x=6+24=(6+2)(6−2)4(6−2)=6−24(6−2)=44(6−2)=6−2y=46−2=4(6+2)(6−2)(6+2)=4(6+2)6−2=4(6+2)4=6+2y = \frac{4}{\sqrt{6}-\sqrt{2}} = \frac{4(\sqrt{6}+\sqrt{2})}{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})} = \frac{4(\sqrt{6}+\sqrt{2})}{6-2} = \frac{4(\sqrt{6}+\sqrt{2})}{4} = \sqrt{6}+\sqrt{2}y=6−24=(6−2)(6+2)4(6+2)=6−24(6+2)=44(6+2)=6+2x+yx+yx+y と xyxyxy を計算する。x+y=(6−2)+(6+2)=26x+y = (\sqrt{6}-\sqrt{2}) + (\sqrt{6}+\sqrt{2}) = 2\sqrt{6}x+y=(6−2)+(6+2)=26xy=(6−2)(6+2)=6−2=4xy = (\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2}) = 6-2 = 4xy=(6−2)(6+2)=6−2=4x2+xy+y2=(x+y)2−xyx^2+xy+y^2 = (x+y)^2 - xyx2+xy+y2=(x+y)2−xy を計算する。x2+xy+y2=(26)2−4=4⋅6−4=24−4=20x^2+xy+y^2 = (2\sqrt{6})^2 - 4 = 4 \cdot 6 - 4 = 24 - 4 = 20x2+xy+y2=(26)2−4=4⋅6−4=24−4=20x3+x2y+xy2+y3=x2(x+y)+y2(x+y)=(x2+y2)(x+y)=((x+y)2−2xy)(x+y)x^3+x^2y+xy^2+y^3 = x^2(x+y) + y^2(x+y) = (x^2+y^2)(x+y) = ((x+y)^2-2xy)(x+y)x3+x2y+xy2+y3=x2(x+y)+y2(x+y)=(x2+y2)(x+y)=((x+y)2−2xy)(x+y) を計算する。x3+x2y+xy2+y3=((26)2−2⋅4)(26)=(24−8)(26)=16(26)=326x^3+x^2y+xy^2+y^3 = ((2\sqrt{6})^2-2\cdot 4)(2\sqrt{6}) = (24-8)(2\sqrt{6}) = 16(2\sqrt{6}) = 32\sqrt{6}x3+x2y+xy2+y3=((26)2−2⋅4)(26)=(24−8)(26)=16(26)=3263. 最終的な答えx2+xy+y2=20x^2+xy+y^2 = 20x2+xy+y2=20x3+x2y+xy2+y3=326x^3+x^2y+xy^2+y^3 = 32\sqrt{6}x3+x2y+xy2+y3=326