関数 $y = \frac{x^2 + 1}{e^x}$ を $x$ で微分せよ。

解析学微分関数の微分商の微分公式指数関数
2025/6/26

1. 問題の内容

関数 y=x2+1exy = \frac{x^2 + 1}{e^x}xx で微分せよ。

2. 解き方の手順

商の微分公式 (uv)=uvuvv2\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} を用いる。
ここで、u=x2+1u = x^2 + 1v=exv = e^x とおく。
すると、u=2xu' = 2xv=exv' = e^x となる。
したがって、
y=2xex(x2+1)ex(ex)2y' = \frac{2x \cdot e^x - (x^2 + 1) \cdot e^x}{(e^x)^2}
=ex(2xx21)e2x= \frac{e^x(2x - x^2 - 1)}{e^{2x}}
=2xx21ex= \frac{2x - x^2 - 1}{e^x}
=(x22x+1)ex= \frac{-(x^2 - 2x + 1)}{e^x}
=(x1)2ex= -\frac{(x-1)^2}{e^x}

3. 最終的な答え

y=(x1)2exy' = -\frac{(x-1)^2}{e^x}

「解析学」の関連問題

実数 $a$ に対して、広義積分 $I(a) = \int_0^\infty \frac{3x \sin(2x) + 8e^{-x^2} + 2x^2}{x^a} dx$ の収束性(収束、$\inft...

広義積分収束性積分極限不等式
2025/6/26

$\lim_{x \to \infty} \frac{x \log x}{x + \log x}$ の極限を求める問題です。

極限ロピタルの定理対数関数
2025/6/26

以下の2つの曲線について、x軸のまわりに1回転させてできる回転面の面積を求めます。 (1) $y=3x$ ($2 \le x \le 5$) (2) $y=\sqrt{x+1}$ ($-1 \le x...

積分回転体の体積関数の微分
2025/6/26

$\lim_{x \to 1} \frac{\sin(\pi x)}{x - 1}$ を計算する問題です。

極限三角関数置換
2025/6/26

実数 $a$ に対して、広義積分 $I(a) = \int_0^\infty \frac{3x\sin(2x) + 8e^{-x^2} + 2x^2}{x^a}dx$ の収束性を$a$の値に応じて判定...

広義積分収束性積分判定
2025/6/26

問題は、以下の2つの極限を求める問題です。 (1) $\lim_{x \to +0} \frac{\sin x - \sin x^2}{x - x^2}$ (2) $\lim_{x \to \inft...

極限三角関数対数関数ロピタルの定理
2025/6/26

1. 以下の曲線または直線で囲まれた図形を $y$ 軸のまわりに1回転してできる回転体の体積を求めよ。 (1) $y = 2 - x^2 (x \ge 0), x = 0, y = 0$ ...

積分回転体の体積曲線の長さ部分積分
2025/6/26

重積分 $\iint_{D_2} 2\log(1+x^2+y^2) dxdy$ の値を求める問題です。ここで、$D_2 = \{(x,y) | 0 \le x^2+y^2 \le 1\}$ です。

重積分極座標変換部分積分積分
2025/6/26

関数 $f(x) = x\cos x$ について、区間 $(0, \frac{\pi}{2})$ において、$f'(x)=0$ を満たす $x$ の値が存在することを示す問題です。

微分中間値の定理関数の性質導関数
2025/6/26

曲線 $C: y = x^3 - x$ が与えられている。点P, Qは曲線C上の点で、Pのx座標が$a$、Qのx座標が$b$とする。Pを通る直線がQでCに接するとき、以下の問題を解く。 (1) $b$...

微分接線面積曲線三次関数傾き
2025/6/26