三角形ABCにおいて、$AB=2$, $CA=\sqrt{3}-1$, $\angle CAB=30^\circ$のとき、$BC$の長さと$\sin \angle ABC$の値を求める問題です。幾何学三角形余弦定理正弦定理三角比2025/6/261. 問題の内容三角形ABCにおいて、AB=2AB=2AB=2, CA=3−1CA=\sqrt{3}-1CA=3−1, ∠CAB=30∘\angle CAB=30^\circ∠CAB=30∘のとき、BCBCBCの長さとsin∠ABC\sin \angle ABCsin∠ABCの値を求める問題です。2. 解き方の手順まず、余弦定理を用いてBCBCBCの長さを求めます。余弦定理より、BC2=AB2+CA2−2⋅AB⋅CA⋅cos∠CABBC^2 = AB^2 + CA^2 - 2 \cdot AB \cdot CA \cdot \cos \angle CABBC2=AB2+CA2−2⋅AB⋅CA⋅cos∠CABBC2=22+(3−1)2−2⋅2⋅(3−1)⋅cos30∘BC^2 = 2^2 + (\sqrt{3}-1)^2 - 2 \cdot 2 \cdot (\sqrt{3}-1) \cdot \cos 30^\circBC2=22+(3−1)2−2⋅2⋅(3−1)⋅cos30∘BC2=4+(3−23+1)−4(3−1)⋅32BC^2 = 4 + (3 - 2\sqrt{3} + 1) - 4(\sqrt{3}-1) \cdot \frac{\sqrt{3}}{2}BC2=4+(3−23+1)−4(3−1)⋅23BC2=8−23−2(3−1)3BC^2 = 8 - 2\sqrt{3} - 2(\sqrt{3}-1)\sqrt{3}BC2=8−23−2(3−1)3BC2=8−23−2(3−3)BC^2 = 8 - 2\sqrt{3} - 2(3-\sqrt{3})BC2=8−23−2(3−3)BC2=8−23−6+23BC^2 = 8 - 2\sqrt{3} - 6 + 2\sqrt{3}BC2=8−23−6+23BC2=2BC^2 = 2BC2=2BC=2BC = \sqrt{2}BC=2次に、正弦定理を用いてsin∠ABC\sin \angle ABCsin∠ABCを求めます。正弦定理より、BCsin∠CAB=CAsin∠ABC\frac{BC}{\sin \angle CAB} = \frac{CA}{\sin \angle ABC}sin∠CABBC=sin∠ABCCAsin∠ABC=CA⋅sin∠CABBC\sin \angle ABC = \frac{CA \cdot \sin \angle CAB}{BC}sin∠ABC=BCCA⋅sin∠CABsin∠ABC=(3−1)⋅sin30∘2\sin \angle ABC = \frac{(\sqrt{3}-1) \cdot \sin 30^\circ}{\sqrt{2}}sin∠ABC=2(3−1)⋅sin30∘sin∠ABC=(3−1)⋅122\sin \angle ABC = \frac{(\sqrt{3}-1) \cdot \frac{1}{2}}{\sqrt{2}}sin∠ABC=2(3−1)⋅21sin∠ABC=3−122=6−24=6−24\sin \angle ABC = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}sin∠ABC=223−1=46−2=46−23. 最終的な答えBC=2BC = \sqrt{2}BC=2sin∠ABC=6−24\sin \angle ABC = \frac{\sqrt{6} - \sqrt{2}}{4}sin∠ABC=46−2