放物線 $y=x^2$ と直線 $y=mx+n$ が点 $P(t, t^2)$ で接するとき、$m$ と $n$ の値を求める。

解析学微分接線放物線代数
2025/6/26

1. 問題の内容

放物線 y=x2y=x^2 と直線 y=mx+ny=mx+n が点 P(t,t2)P(t, t^2) で接するとき、mmnn の値を求める。

2. 解き方の手順

放物線 y=x2y = x^2 上の点 (t,t2)(t, t^2) における接線を考える。
まず、y=x2y = x^2 を微分すると、y=2xy' = 2x となる。
したがって、点 (t,t2)(t, t^2) における接線の傾きは 2t2t である。
接線の式は、
yt2=2t(xt)y - t^2 = 2t(x - t)
y=2tx2t2+t2y = 2tx - 2t^2 + t^2
y=2txt2y = 2tx - t^2
この接線が y=mx+ny = mx + n と一致するので、
m=2tm = 2t
n=t2n = -t^2
問題文には tt の値が与えられていないため、mmnntt を用いて表される。
ただし、図から t>0t > 0 であることがわかる。

3. 最終的な答え

m=2tm = 2t
n=t2n = -t^2
ここで、ttt>0t > 0 を満たす任意の実数。

「解析学」の関連問題

関数 $f(x)$ は閉区間 $I=[a, b]$ で連続、開区間 $(a, b)$ で微分可能である。以下の選択肢から正しいものをすべて選ぶ。

微分関数の連続性単調増加単調減少導関数
2025/6/26

関数 $f(x) = -x + 2$($-\pi \le x \le \pi$)をフーリエ級数展開せよ。ただし、$f(x)$ は周期 $2\pi$ の周期関数とする。

フーリエ級数周期関数積分
2025/6/26

関数 $f(x) = -x + 2 (-\pi \le x \le \pi)$ をフーリエ級数展開する。ただし、$f(x)$は周期$2\pi$の周期関数とする。

フーリエ級数周期関数積分三角関数
2025/6/26

定積分 $\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} (5\sin t) dt$ を計算します。

定積分三角関数積分
2025/6/26

定積分 $\int_{-\pi}^{\pi} (A\sin(\frac{t}{4}) + B\cos(\frac{t}{3})) dt$ の値を求める。

定積分三角関数奇関数偶関数積分
2025/6/26

## 1. 問題の内容

極限数列関数の極限無限級数部分和部分分数分解
2025/6/26

3次関数 $f(x)$ が与えられており、その極値、グラフの軸との交点などの情報から関数 $f(x)$ を決定し、その接線の方程式を求め、さらに曲線 $y=f(x)$ と接線で囲まれた図形の面積 $S...

3次関数極値接線積分面積
2025/6/26

不等式 $\sqrt{2} \le \sin x - \sqrt{3} \cos x < \sqrt{3}$ を解く問題です。

三角関数不等式三角関数の合成解の範囲
2025/6/26

曲線 $y = x^2 + x$ と曲線 $y = 2x^2$ で囲まれた図形の面積を求める問題です。

積分面積曲線
2025/6/26

(1) 直線 $y = x$ と曲線 $y = x^2 - 2$ で囲まれた図形の面積を求める。 (2) 曲線 $y = x^2 + x$ と曲線 $y = 2x^2$ で囲まれた図形の面積を求める。

積分面積定積分曲線交点
2025/6/26