$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、以下の式の値を求めます。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3) $x^3 + \frac{1}{x^3}$

代数学式の計算有理化代入展開
2025/6/26
はい、承知いたしました。

1. 問題の内容

x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2} のとき、以下の式の値を求めます。
(1) x+1xx + \frac{1}{x}
(2) x2+1x2x^2 + \frac{1}{x^2}
(3) x3+1x3x^3 + \frac{1}{x^3}

2. 解き方の手順

まず、x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2} であることから、1x\frac{1}{x} を求めます。
1x=26+2=2(62)(6+2)(62)=2(62)62=2(62)4=622\frac{1}{x} = \frac{2}{\sqrt{6} + \sqrt{2}} = \frac{2(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{2(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{2(\sqrt{6} - \sqrt{2})}{4} = \frac{\sqrt{6} - \sqrt{2}}{2}
(1) x+1x=6+22+622=6+2+622=262=6x + \frac{1}{x} = \frac{\sqrt{6} + \sqrt{2}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2} + \sqrt{6} - \sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}
(2) x2+1x2=(x+1x)22x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2
x2+1x2=(6)22=62=4x^2 + \frac{1}{x^2} = (\sqrt{6})^2 - 2 = 6 - 2 = 4
(3) x3+1x3=(x+1x)33(x+1x)x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x})
x3+1x3=(6)33(6)=6636=36x^3 + \frac{1}{x^3} = (\sqrt{6})^3 - 3(\sqrt{6}) = 6\sqrt{6} - 3\sqrt{6} = 3\sqrt{6}

3. 最終的な答え

(1) x+1x=6x + \frac{1}{x} = \sqrt{6}
(2) x2+1x2=4x^2 + \frac{1}{x^2} = 4
(3) x3+1x3=36x^3 + \frac{1}{x^3} = 3\sqrt{6}

「代数学」の関連問題

式 $x^2 - y^2 - 2x + 1$ を因数分解してください。

因数分解多項式式の展開
2025/6/26

与えられた8つの2次方程式をそれぞれ解きます。 (1) $9x^2 = 16$ (2) $(x+1)^2 = 3$ (3) $2x^2 - 5x + 3 = 0$ (4) $(\sqrt{2x} - ...

二次方程式解の公式因数分解平方根
2025/6/26

$x^2 - 2x + 1$ を因数分解する。

因数分解二次式多項式
2025/6/26

与えられた関数のグラフを描き、その値域を求める問題です。関数は3つあり、それぞれ定義域が指定されています。 (1) $y = x - 1$ ($x \geq 2$) (2) $y = -2x + 1$...

関数グラフ値域一次関数
2025/6/26

次の計算をせよ。 $4\log_{\sqrt{2}}2 + \frac{1}{2}\log_8 4 - \frac{3}{2}\log_8 8$

対数指数計算
2025/6/26

与えられた対数の計算問題を解きます。具体的には、以下の4つの問題を解きます。 (1) $\log_{6}12 + \log_{6}3$ (2) $\log_{10}25 + \log_{10}4$ (...

対数対数の計算対数の性質
2025/6/26

問題226:$M = a^p$の形で表された関係を、$log_aM = p$の形で表す。 問題227:$log_aM = p$の形で表された関係を、$M = a^p$の形で表す。

対数指数指数法則
2025/6/26

$\log_6 \sqrt[3]{6}$ の値を求めます。

対数指数対数の性質計算
2025/6/26

与えられた対数の値を計算し、簡単にしてください。 (1) $\log_6 36$ (2) $\log_4 64$ (3) $\log_8 \frac{1}{8}$ (4) $\log_{10} \fr...

対数指数
2025/6/26

問題文より、以下の2つの問題があります。 (1) 方程式 $2a - 3x = ax - 6$ を解く。ただし、$a$ は定数。 (2) 不等式 $4ax + 1 < 2x + 2a$ を解く。ただし...

方程式不等式一次方程式一次不等式場合分け定数
2025/6/26