$(\sqrt{5} + \sqrt{2})^2 + (\sqrt{5} - \sqrt{2})^2$ を計算します。代数学平方根式の展開計算2025/6/261. 問題の内容(5+2)2+(5−2)2(\sqrt{5} + \sqrt{2})^2 + (\sqrt{5} - \sqrt{2})^2(5+2)2+(5−2)2 を計算します。2. 解き方の手順まず、それぞれの項を展開します。(5+2)2=(5)2+2(5)(2)+(2)2=5+210+2(\sqrt{5} + \sqrt{2})^2 = (\sqrt{5})^2 + 2(\sqrt{5})(\sqrt{2}) + (\sqrt{2})^2 = 5 + 2\sqrt{10} + 2(5+2)2=(5)2+2(5)(2)+(2)2=5+210+2(5−2)2=(5)2−2(5)(2)+(2)2=5−210+2(\sqrt{5} - \sqrt{2})^2 = (\sqrt{5})^2 - 2(\sqrt{5})(\sqrt{2}) + (\sqrt{2})^2 = 5 - 2\sqrt{10} + 2(5−2)2=(5)2−2(5)(2)+(2)2=5−210+2次に、これらの結果を足し合わせます。(5+210+2)+(5−210+2)=5+2+5+2+210−210=14(5 + 2\sqrt{10} + 2) + (5 - 2\sqrt{10} + 2) = 5 + 2 + 5 + 2 + 2\sqrt{10} - 2\sqrt{10} = 14(5+210+2)+(5−210+2)=5+2+5+2+210−210=143. 最終的な答え14