(1) 不等式 $|5x - 41| < 2x + 1$ を満たす整数 $x$ の最大値と最小値を求める。 (2) 不等式 $2|x - 2| + |x - 1| < 3$ を解く。 (3) 等式 $|x - |x - 2|| = 1$ を満たす実数 $x$ をすべて求める。
2025/6/26
はい、承知いたしました。
1. 問題の内容
(1) 不等式 を満たす整数 の最大値と最小値を求める。
(2) 不等式 を解く。
(3) 等式 を満たす実数 をすべて求める。
2. 解き方の手順
(1) を解く。
まず、絶対値を外すために、 を解く。
を解くと、
を解くと、
したがって、 となる。 なので、 は となる。
最大値は 、最小値は 。
(2) を解く。
場合分けをする。
(i) のとき、
(ii) のとき、
(iii) のとき、
したがって、
(3) を満たす実数 を求める。
場合分けをする。
(i) のとき、
となり不適。
(ii) のとき、
または
または
または
どちらも を満たす。
3. 最終的な答え
(1) 最大値 , 最小値
(2)
(3)