全体集合 $U = \{x | x \text{ は18以下の自然数}\}$ の部分集合 $A, B, C$ がそれぞれ次のように定義されています。 $A = \{x | x \text{ は素数}\}$ $B = \{x | x \text{ は3で割って1余る数}\}$ $C = \{x | x \text{ は18の約数}\}$ これらの集合 $A, B, C$ を、要素を書き並べる方法で表しなさい。

その他集合集合の要素素数約数
2025/6/26

1. 問題の内容

全体集合 U={xx は18以下の自然数}U = \{x | x \text{ は18以下の自然数}\} の部分集合 A,B,CA, B, C がそれぞれ次のように定義されています。
A={xx は素数}A = \{x | x \text{ は素数}\}
B={xx は3で割って1余る数}B = \{x | x \text{ は3で割って1余る数}\}
C={xx は18の約数}C = \{x | x \text{ は18の約数}\}
これらの集合 A,B,CA, B, C を、要素を書き並べる方法で表しなさい。

2. 解き方の手順

まず、全体集合 UU を書き出します。U={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}
次に、集合 AA を求めます。UU の要素の中で素数であるものを抜き出します。素数とは、1 と自分自身以外に約数を持たない自然数です。
A={2,3,5,7,11,13,17}A = \{2, 3, 5, 7, 11, 13, 17\}
次に、集合 BB を求めます。UU の要素の中で3で割ると1余る数を抜き出します。
3×0+1=13 \times 0 + 1 = 1
3×1+1=43 \times 1 + 1 = 4
3×2+1=73 \times 2 + 1 = 7
3×3+1=103 \times 3 + 1 = 10
3×4+1=133 \times 4 + 1 = 13
3×5+1=163 \times 5 + 1 = 16
したがって、B={1,4,7,10,13,16}B = \{1, 4, 7, 10, 13, 16\}
最後に、集合 CC を求めます。UU の要素の中で18の約数を抜き出します。18の約数は、18を割り切れる数です。
18=1×1818 = 1 \times 18
18=2×918 = 2 \times 9
18=3×618 = 3 \times 6
したがって、C={1,2,3,6,9,18}C = \{1, 2, 3, 6, 9, 18\}

3. 最終的な答え

A={2,3,5,7,11,13,17}A = \{2, 3, 5, 7, 11, 13, 17\}
B={1,4,7,10,13,16}B = \{1, 4, 7, 10, 13, 16\}
C={1,2,3,6,9,18}C = \{1, 2, 3, 6, 9, 18\}

「その他」の関連問題

$M = \sqrt[3]{9}$ とするとき、以下の問いに答えます。 (1) $\log_{10}M$ の値を、小数第5位を四捨五入して小数第4位まで求めます。 (2) $M$ の近似値を小数第2位...

対数指数常用対数近似値数値計算
2025/7/19

常用対数表を使わずに、$\log_{10}2$の値について考察する問題です。 (1) $2^{10} > 10^3$を利用して、$\frac{3}{10} < \log_{10}2$を証明します。 (...

対数不等式常用対数対数の性質数値評価
2025/7/19

問題は、与えられた命題について、その対偶を述べ、元の命題と対偶の真偽を調べることです。 (1) $n$ は3の倍数 $\Rightarrow$ $n$ は9の倍数 (2) $mn$ は奇数 $\Rig...

命題対偶真偽倍数整数
2025/7/19

問題は、与えられた条件の否定を求める問題です。 (1) $a = 1$ かつ $b = -1$ (2) $m, n$ の少なくとも一方は偶数である。

論理否定命題
2025/7/19

与えられた3つの命題の真偽を判定する問題です。 (1) 自然数13は素数である。 (2) $3^2 < 9$ (3) 正方形は台形である。

命題真偽判定素数不等式幾何
2025/7/19

集合 $A$ と集合 $B$ が与えられています。 $A = \{3, 5, 6, 8\}$ $B = \{2, 6, 7, 9\}$ これらの集合に関して、問題が与えられていないため、共通部分 $A...

集合共通部分
2025/7/19

A, B, C, D, E は 1 から 5 までの異なる整数であり、以下の関係を満たす。 \begin{align*} A &> B \times 2 \\ D &= C \tim...

論理パズル数当てパズル順序問題
2025/7/18

$x$ が実数のとき、命題「$-1 < x < 1$ ならば $-1 \le x < 1$ である」が真であるか偽であるかを判定する。偽の場合は反例を挙げる。

命題真偽判定不等式
2025/7/18

加法定理を用いて、以下の値を求める問題です。 (1) $\sin 15^\circ$ (2) $\tan 75^\circ$ (3) $\cos \frac{\pi}{12}$

三角関数加法定理三角比
2025/7/18

実数 $a, b$ が与えられたとき、命題 $r(x): x > a \land x > b$ の否定 $\neg r(x)$ を求める問題です。選択肢の中から正しいものを選びます。

論理命題否定論理記号
2025/7/18