次の関数の2階偏導関数 $f_{xx}$, $f_{yy}$ と交差偏導関数 $f_{xy}$, $f_{yx}$ を求め、同じ値になることを確認します。 (1) $f(x, y) = xy^2 - 3xy^2$ (2) $f(x, y) = \frac{2}{3}x^3y - \frac{1}{4}xy^2$ (3) $f(x, y) = x^{\frac{1}{4}}y - x^3y^{\frac{1}{3}}$

解析学偏導関数2階偏導関数多変数関数
2025/6/27

1. 問題の内容

次の関数の2階偏導関数 fxxf_{xx}, fyyf_{yy} と交差偏導関数 fxyf_{xy}, fyxf_{yx} を求め、同じ値になることを確認します。
(1) f(x,y)=xy23xy2f(x, y) = xy^2 - 3xy^2
(2) f(x,y)=23x3y14xy2f(x, y) = \frac{2}{3}x^3y - \frac{1}{4}xy^2
(3) f(x,y)=x14yx3y13f(x, y) = x^{\frac{1}{4}}y - x^3y^{\frac{1}{3}}

2. 解き方の手順

偏導関数を計算する手順は以下の通りです。
(1) f(x,y)=xy23xy2=2xy2f(x, y) = xy^2 - 3xy^2 = -2xy^2
* fx=fx=2y2f_x = \frac{\partial f}{\partial x} = -2y^2
* fy=fy=4xyf_y = \frac{\partial f}{\partial y} = -4xy
* fxx=2fx2=x(2y2)=0f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (-2y^2) = 0
* fyy=2fy2=y(4xy)=4xf_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (-4xy) = -4x
* fxy=2fyx=y(2y2)=4yf_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (-2y^2) = -4y
* fyx=2fxy=x(4xy)=4yf_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (-4xy) = -4y
(2) f(x,y)=23x3y14xy2f(x, y) = \frac{2}{3}x^3y - \frac{1}{4}xy^2
* fx=fx=2x2y14y2f_x = \frac{\partial f}{\partial x} = 2x^2y - \frac{1}{4}y^2
* fy=fy=23x312xyf_y = \frac{\partial f}{\partial y} = \frac{2}{3}x^3 - \frac{1}{2}xy
* fxx=2fx2=x(2x2y14y2)=4xyf_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2x^2y - \frac{1}{4}y^2) = 4xy
* fyy=2fy2=y(23x312xy)=12xf_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\frac{2}{3}x^3 - \frac{1}{2}xy) = -\frac{1}{2}x
* fxy=2fyx=y(2x2y14y2)=2x212yf_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2x^2y - \frac{1}{4}y^2) = 2x^2 - \frac{1}{2}y
* fyx=2fxy=x(23x312xy)=2x212yf_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{2}{3}x^3 - \frac{1}{2}xy) = 2x^2 - \frac{1}{2}y
(3) f(x,y)=x14yx3y13f(x, y) = x^{\frac{1}{4}}y - x^3y^{\frac{1}{3}}
* fx=fx=14x34y3x2y13f_x = \frac{\partial f}{\partial x} = \frac{1}{4}x^{-\frac{3}{4}}y - 3x^2y^{\frac{1}{3}}
* fy=fy=x14x313y23=x1413x3y23f_y = \frac{\partial f}{\partial y} = x^{\frac{1}{4}} - x^3\frac{1}{3}y^{-\frac{2}{3}} = x^{\frac{1}{4}} - \frac{1}{3}x^3y^{-\frac{2}{3}}
* fxx=2fx2=x(14x34y3x2y13)=316x74y6xy13f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{1}{4}x^{-\frac{3}{4}}y - 3x^2y^{\frac{1}{3}}) = -\frac{3}{16}x^{-\frac{7}{4}}y - 6xy^{\frac{1}{3}}
* fyy=2fy2=y(x1413x3y23)=29x3y53f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x^{\frac{1}{4}} - \frac{1}{3}x^3y^{-\frac{2}{3}}) = \frac{2}{9}x^3y^{-\frac{5}{3}}
* fxy=2fyx=y(14x34y3x2y13)=14x34x2y23f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{1}{4}x^{-\frac{3}{4}}y - 3x^2y^{\frac{1}{3}}) = \frac{1}{4}x^{-\frac{3}{4}} - x^2y^{-\frac{2}{3}}
* fyx=2fxy=x(x1413x3y23)=14x34x2y23f_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (x^{\frac{1}{4}} - \frac{1}{3}x^3y^{-\frac{2}{3}}) = \frac{1}{4}x^{-\frac{3}{4}} - x^2y^{-\frac{2}{3}}

3. 最終的な答え

(1) f(x,y)=xy23xy2f(x, y) = xy^2 - 3xy^2
* fxx=0f_{xx} = 0
* fyy=4xf_{yy} = -4x
* fxy=4yf_{xy} = -4y
* fyx=4yf_{yx} = -4y
(2) f(x,y)=23x3y14xy2f(x, y) = \frac{2}{3}x^3y - \frac{1}{4}xy^2
* fxx=4xyf_{xx} = 4xy
* fyy=12xf_{yy} = -\frac{1}{2}x
* fxy=2x212yf_{xy} = 2x^2 - \frac{1}{2}y
* fyx=2x212yf_{yx} = 2x^2 - \frac{1}{2}y
(3) f(x,y)=x14yx3y13f(x, y) = x^{\frac{1}{4}}y - x^3y^{\frac{1}{3}}
* fxx=316x74y6xy13f_{xx} = -\frac{3}{16}x^{-\frac{7}{4}}y - 6xy^{\frac{1}{3}}
* fyy=29x3y53f_{yy} = \frac{2}{9}x^3y^{-\frac{5}{3}}
* fxy=14x34x2y23f_{xy} = \frac{1}{4}x^{-\frac{3}{4}} - x^2y^{-\frac{2}{3}}
* fyx=14x34x2y23f_{yx} = \frac{1}{4}x^{-\frac{3}{4}} - x^2y^{-\frac{2}{3}}