与えられた条件から $x$ を求め、次に $y$ を求めます。与えられた条件は次のとおりです。 $x = 2$ $y = x^2 + 1$

代数学代入式の計算変数
2025/6/27

1. 問題の内容

与えられた条件から xx を求め、次に yy を求めます。与えられた条件は次のとおりです。
x=2x = 2
y=x2+1y = x^2 + 1

2. 解き方の手順

まず、x=2x = 2 が与えられています。
次に、yy を計算するために、xx の値を y=x2+1y = x^2 + 1 に代入します。
y=(2)2+1y = (2)^2 + 1
y=4+1y = 4 + 1
y=5y = 5

3. 最終的な答え

x=2x = 2
y=5y = 5

「代数学」の関連問題

与えられた方程式は、$x$ についての方程式です。この方程式を解いて、$x$ の値を求めることが目標です。 方程式は以下の通りです。 $\frac{57 - x \times \frac{160}{2...

方程式分数一次方程式計算
2025/6/27

数列 $\{a_n\}$ が、$a_1 = 6$, $a_{n+1} = 6a_n + 3^{n+1}$ を満たすとき、$b_n = \frac{a_n}{3^n}$ で定義される数列 $\{b_n\...

数列漸化式一般項
2025/6/27

与えられた漸化式を満たす数列 $\{a_n\}$ の一般項を求める問題です。今回は、(2)の問題を解きます。 初期条件: $a_1 = 1$ 漸化式: $a_{n+1} = \frac{a_n}{3a...

数列漸化式一般項等比数列分数式
2025/6/27

複素数 $z = a + bi$ が与えられたとき、$a^2 - b^2$ を $z$ と $\overline{z}$ を用いて表す問題です。ここで、$\overline{z}$ は $z$ の共役...

複素数共役複素数複素数の計算
2025/6/27

二次方程式 $2x^2 + 2x - 1 = 0$ を解きます。

二次方程式解の公式平方根の計算
2025/6/27

与えられた数式を計算して簡単にします。数式は以下の通りです。 $\frac{2^{n-1}}{2} + 2(2^{n-1}) + (2^{n-1})$

指数式の計算指数法則簡略化
2025/6/27

与えられた6つの一次不等式を解く問題です。

一次不等式不等式
2025/6/27

$x = 2.5$、$y = 0.8$ のとき、$(x+y)^2 - 6(x+y) + 9$ の値を求めなさい。

式の計算因数分解式の値
2025/6/27

与えられた式を計算して、簡単にします。式は $\frac{n-1}{2} \{1 + (n-1)\} + 1$ です。

式の計算代数式数式展開
2025/6/27

次の1次不等式を解く問題です。具体的には、以下の6つの不等式を解きます。 (1) $5x-4>3(x+2)$ (2) $2(2x-1)<7x+4$ (3) $5(x-3) \le 3(x+1)$ (4...

一次不等式不等式計算
2025/6/27