不定積分 $\int x^3 dx = ax^4 + C$ が与えられたとき、$a$ の値を求める問題です。

解析学不定積分積分積分計算
2025/6/27

1. 問題の内容

不定積分 x3dx=ax4+C\int x^3 dx = ax^4 + C が与えられたとき、aa の値を求める問題です。

2. 解き方の手順

まず、x3dx\int x^3 dx を計算します。
一般に、xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + Cn1n \neq -1)が成り立ちます。
したがって、
x3dx=x3+13+1+C=x44+C\int x^3 dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C
となります。
問題の式と比較すると、
x44+C=ax4+C\frac{x^4}{4} + C = ax^4 + C
であるから、a=14a = \frac{1}{4} となります。

3. 最終的な答え

a=14a = \frac{1}{4}

「解析学」の関連問題

関数 $f(x,y)$ が以下のように定義されています。 $f(x,y) = \begin{cases} |x|^\alpha |y|^\beta & (x,y) \neq (0,0) \\ 0 & ...

多変数関数方向微分係数全微分可能性
2025/6/27

## 問題

関数のグラフ微分漸近線増減極値
2025/6/27

定積分 $\int_{-1}^{2} (-x^2 + 5x - 4) \, dx$ を計算します。

定積分積分計算
2025/6/27

問題は2つのパート(2Aと2B)から構成されています。 * 2A: 関数 $f(x, y) = \sqrt{x^2 + y^2}$ について、与えられた点での微分可能性、接平面の方程式、法線の方程...

偏微分全微分接平面法線変数変換
2025/6/27

定積分 $\int_{-2}^{4} (-2) \, dx$ を計算してください。

定積分積分計算
2025/6/27

定積分 $\int_{1}^{3} (3x^2 - 1) \, dx$ を計算します。

定積分積分計算
2025/6/27

定積分 $\int_{-1}^{0} (x^2 + 3x - 1) dx$ を計算します。

定積分積分不定積分計算
2025/6/27

関数 $f(x) = e^{-ax} + x$ が与えられている。ただし、$a$ は正の数とする。 (1) $f(x)$ の最小値を与える $x$ の値を $a$ を用いて表せ。 (2) $f(x)$...

微分関数の最大最小指数関数対数関数
2025/6/27

定積分 $\int_{-2}^{1} (3x^2 - 4x + 5) dx$ を計算します。

定積分積分多項式関数
2025/6/27

与えられた和 $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}}$ を求める問題です。

級数等比数列
2025/6/27