与えられた立体の体積を求める問題です。立体は、2つの直方体が階段状に組み合わさったような形をしています。それぞれの直方体の辺の長さが図に示されています。

幾何学体積立体図形直方体
2025/6/27

1. 問題の内容

与えられた立体の体積を求める問題です。立体は、2つの直方体が階段状に組み合わさったような形をしています。それぞれの直方体の辺の長さが図に示されています。

2. 解き方の手順

立体を2つの直方体A, Bに分けて考えます。
直方体Aの体積をVAV_A、直方体Bの体積をVBV_Bとします。
全体の体積VVは、V=VA+VBV = V_A + V_Bで計算できます。
直方体Aの寸法は、高さ5m、幅7m、奥行き12mです。したがって、VAV_Aは次のように計算できます。
VA=5×7×12=420m3V_A = 5 \times 7 \times 12 = 420 m^3
直方体Bの寸法は、高さ3m、幅6m、奥行き12mです。したがって、VBV_Bは次のように計算できます。
VB=3×6×12=216m3V_B = 3 \times 6 \times 12 = 216 m^3
全体の体積は、V=VA+VB=420+216=636m3V = V_A + V_B = 420 + 216 = 636 m^3

3. 最終的な答え

636 m3m^3

「幾何学」の関連問題

与えられた3点を頂点とする三角形の面積を求める問題です。今回は、(1) O(0, 0), A(1, 8), B(2, 6) について解きます。

三角形面積ベクトル座標平面
2025/6/27

円周上に点A, B, Cがあり、円の中心をOとする。角ABC = 47°のとき、角AOC = xを求める。

円周角中心角角度
2025/6/27

円周角と中心角の関係を利用して、図に示された角$x$の大きさを求める問題です。全部で3つの図形があります。

円周角中心角角度図形
2025/6/27

三角形OABにおいて、OA=OB=1, ∠AOB=90°とする。辺OAを3:2に内分する点をP, 辺OBを1:1に内分する点をQ, 線分BPと線分AQの交点をR, 直線ORと辺ABの交点をSとする。 ...

ベクトル三角形面積内分点
2025/6/27

問題は2つの小問から構成されています。 (1) 3つの角が30度、60度、90度の2つの三角形が常に合同かどうかを判断します。 (2) 1辺の長さが5cmの2つの正方形が常に合同かどうかを判断します。

合同三角形正方形角度
2025/6/27

複素数平面上の点 $z$ が原点を中心とする半径 $\sqrt{2}$ の円周上を動くとき、以下の問いに答える。 (1) 複素数 $w = \frac{z-1}{z-i}$ で表される点 $w$ の描...

複素数平面回転複素数
2025/6/27

図に示された立体の体積を求める問題です。立体の底面は直角三角形であり、長さが3mと5mの辺を持つ。高さは12mです。

体積立体図形直角三角形面積
2025/6/27

与えられた立方体の体積を求める問題です。立方体の各辺の長さは8cmです。

立方体体積三次元空間図形
2025/6/27

三角形ABCにおいて、$AB=20$, $BC=10$, $AC=15$である。角Aの外角の二等分線と辺BCの延長の交点をDとする。線分BDの長さを求める。

三角形角の二等分線相似幾何
2025/6/27

直径30cmの丸太から、切り口ができるだけ大きな正方形となるように角材をとるとき、その切り口の正方形の1辺の長さを求める問題です。

正方形三平方の定理図形
2025/6/27