平行六面体ABCD-EFGHにおいて、$\vec{AB} = \vec{a}, \vec{AD} = \vec{b}, \vec{AE} = \vec{c}$とする。 (1) 次のベクトルを$\vec{a}, \vec{b}, \vec{c}$を用いて表せ。 (ア) $\vec{BH}$ (イ) $\vec{CE}$ (ウ) $\vec{FD}$ (エ) $\vec{GA}$ (2) 線分EGと線分FHの交点をPとするとき、$\vec{AP}, \vec{PC}$を$\vec{a}, \vec{b}, \vec{c}$を用いて表せ。
2025/6/27
1. 問題の内容
平行六面体ABCD-EFGHにおいて、とする。
(1) 次のベクトルをを用いて表せ。
(ア)
(イ)
(ウ)
(エ)
(2) 線分EGと線分FHの交点をPとするとき、をを用いて表せ。
2. 解き方の手順
(1)
(ア)
(イ)
(ウ)
(エ)
(2)
点Pは線分EGと線分FHの交点なので、EGの中点かつFHの中点である。
または、
3. 最終的な答え
(1)
(ア)
(イ)
(ウ)
(エ)
(2)