2点 $A(2, 3)$ と $B(-1, 4)$ を両端とする線分 $AB$ (両端を含む)が、直線 $y - ax + 1 = 0$ と交わるような $a$ の値の範囲を求めます。
2025/6/28
1. 問題の内容
2点 と を両端とする線分 (両端を含む)が、直線 と交わるような の値の範囲を求めます。
2. 解き方の手順
線分 上の点が直線 上にあるということは、線分 上の点の座標 が を満たすということです。
と変形できます。
点 を通る場合、 を代入すると、
点 を通る場合、 を代入すると、
直線 が線分 と交わる条件は、点 と点 が直線 に関して反対側に位置するか、または直線上に存在することです。
つまり、点 を代入した値と点 を代入した値の符号が異なるか、どちらかが0になる必要があります。
とおくと、
よって、 または
3. 最終的な答え
または