円Oにおいて、直線ATは点Aで円Oに接する接線である。$\angle COA = 60^\circ$、$\angle ATC = 40^\circ$のとき、$\angle ABC = x$の値を求める。

幾何学接線円周角中心角角度
2025/6/28

1. 問題の内容

円Oにおいて、直線ATは点Aで円Oに接する接線である。COA=60\angle COA = 60^\circATC=40\angle ATC = 40^\circのとき、ABC=x\angle ABC = xの値を求める。

2. 解き方の手順

まず、円の中心Oと接点Aを結ぶ半径OAを考えると、接線ATは半径OAと直交するため、OAT=90\angle OAT = 90^\circである。
次に、三角形OATにおいて、AOT=180OATATO=1809040=50\angle AOT = 180^\circ - \angle OAT - \angle ATO = 180^\circ - 90^\circ - 40^\circ = 50^\circとなる。
円の中心角COA=60\angle COA = 60^\circなので、COT=COA+AOT=60+50=110\angle COT = \angle COA + \angle AOT = 60^\circ + 50^\circ = 110^\circとなる。
弧ACに対する円周角は、中心角の半分であるから、ABC=x=12AOC=12×110=55\angle ABC = x = \frac{1}{2} \angle AOC = \frac{1}{2} \times 110^\circ = 55^\circとなる。

3. 最終的な答え

55

「幾何学」の関連問題

与えられた曲線について、x軸方向に-2、y軸方向に3だけ平行移動した曲線の方程式を求め、さらにその焦点を求める問題です。以下の3つの曲線についてそれぞれ求めます。 (1) $\frac{x^2}{4}...

二次曲線平行移動楕円双曲線放物線焦点
2025/6/28

正方形のまわりに幅 $a$ mの道がある。道の真ん中を通る線の長さを $l$、道の面積を $S$ とするとき、$S=al$ となることを証明する。空欄に当てはまる式を答える。

正方形面積周囲の長さ証明代数
2025/6/28

3点A($\vec{a}$), B($\vec{b}$), C($\vec{c}$)を頂点とする三角形ABCがある。辺AB, ACの中点をそれぞれM, Nとし、辺BCを3等分する点をBに近い方からD,...

ベクトル三角形重心内分点中点
2025/6/28

三角形ABCにおいて、A=5, b=6, C=7のとき、この三角形の内接円の半径rを求める。

三角形内接円ヘロンの公式面積
2025/6/28

与えられたベクトルに関する等式 $\vec{p} \cdot \vec{p} - 2(\vec{a} + \vec{b}) \cdot \vec{p} + 4\vec{a} \cdot \vec{b}...

ベクトル内積ベクトルの等式
2025/6/28

点 $(2, 6)$ を通り、円 $x^2 + y^2 = 20$ に接する直線の方程式を求める問題です。

接線点と直線の距離方程式
2025/6/28

与えられた円に外接または内接し、中心が(4, -3)である円の方程式を求める問題です。 (1) 円 $x^2 + y^2 = 4$ に外接する円の方程式を求めます。中心は $(4, -3)$ です。 ...

円の方程式外接内接座標平面
2025/6/28

円 $x^2 + y^2 = 5$ と直線 $2x - 3y - k = 0$ について、以下の問いに答えます。 (1) 円と直線が接するような定数 $k$ の値を求めます。 (2) 円と直線が共有点...

直線接する共有点距離代数
2025/6/28

与えられた4つの点A, B, C, Dの座標がそれぞれどの象限にあるかを答えます。 点A(2, 3), 点B(2, -3), 点C(-2, 3), 点D(-2, -3)

座標象限平面
2025/6/28

右図の直角三角形を、直線 m を軸に1回転させてできる立体の体積を求める。直角三角形の辺の長さは、4 cm、3 cm、5 cm である。

体積円錐直角三角形回転体
2025/6/28