与えられた関数 $y = (x^2 + 1)(x^3 + x)(x^4 - x^2)$ を微分して、$dy/dx$ を求める問題です。解析学微分積の微分導関数多項式2025/6/281. 問題の内容与えられた関数 y=(x2+1)(x3+x)(x4−x2)y = (x^2 + 1)(x^3 + x)(x^4 - x^2)y=(x2+1)(x3+x)(x4−x2) を微分して、dy/dxdy/dxdy/dx を求める問題です。2. 解き方の手順積の微分法を適用します。3つの関数 uuu, vvv, www の積の微分は、(uvw)′=u′vw+uv′w+uvw′(uvw)' = u'vw + uv'w + uvw'(uvw)′=u′vw+uv′w+uvw′で与えられます。ここで、u=x2+1u = x^2 + 1u=x2+1v=x3+xv = x^3 + xv=x3+xw=x4−x2w = x^4 - x^2w=x4−x2とおきます。それぞれの導関数を計算します。u′=ddx(x2+1)=2xu' = \frac{d}{dx}(x^2 + 1) = 2xu′=dxd(x2+1)=2xv′=ddx(x3+x)=3x2+1v' = \frac{d}{dx}(x^3 + x) = 3x^2 + 1v′=dxd(x3+x)=3x2+1w′=ddx(x4−x2)=4x3−2xw' = \frac{d}{dx}(x^4 - x^2) = 4x^3 - 2xw′=dxd(x4−x2)=4x3−2x積の微分法の公式に代入します。dydx=(2x)(x3+x)(x4−x2)+(x2+1)(3x2+1)(x4−x2)+(x2+1)(x3+x)(4x3−2x)\frac{dy}{dx} = (2x)(x^3 + x)(x^4 - x^2) + (x^2 + 1)(3x^2 + 1)(x^4 - x^2) + (x^2 + 1)(x^3 + x)(4x^3 - 2x)dxdy=(2x)(x3+x)(x4−x2)+(x2+1)(3x2+1)(x4−x2)+(x2+1)(x3+x)(4x3−2x)これを展開して整理します。dydx=2x(x7−x5+x5−x3)+(x2+1)(3x6−3x4+x4−x2)+(x2+1)(4x6−2x4+4x4−2x2)\frac{dy}{dx} = 2x(x^7 - x^5 + x^5 - x^3) + (x^2+1)(3x^6 - 3x^4 + x^4 - x^2) + (x^2+1)(4x^6 - 2x^4 + 4x^4 - 2x^2)dxdy=2x(x7−x5+x5−x3)+(x2+1)(3x6−3x4+x4−x2)+(x2+1)(4x6−2x4+4x4−2x2)dydx=2x8−2x4+(x2+1)(3x6−2x4−x2)+(x2+1)(4x6+2x4−2x2)\frac{dy}{dx} = 2x^8 - 2x^4 + (x^2+1)(3x^6 - 2x^4 - x^2) + (x^2+1)(4x^6 + 2x^4 - 2x^2)dxdy=2x8−2x4+(x2+1)(3x6−2x4−x2)+(x2+1)(4x6+2x4−2x2)dydx=2x8−2x4+(3x8−2x6−x4+3x6−2x4−x2)+(4x8+2x6−2x4+4x6+2x4−2x2)\frac{dy}{dx} = 2x^8 - 2x^4 + (3x^8 - 2x^6 - x^4 + 3x^6 - 2x^4 - x^2) + (4x^8 + 2x^6 - 2x^4 + 4x^6 + 2x^4 - 2x^2)dxdy=2x8−2x4+(3x8−2x6−x4+3x6−2x4−x2)+(4x8+2x6−2x4+4x6+2x4−2x2)dydx=2x8−2x4+3x8+x6−3x4−x2+4x8+6x6−2x2\frac{dy}{dx} = 2x^8 - 2x^4 + 3x^8 + x^6 - 3x^4 - x^2 + 4x^8 + 6x^6 - 2x^2dxdy=2x8−2x4+3x8+x6−3x4−x2+4x8+6x6−2x2dydx=(2+3+4)x8+(1+6)x6+(−2−3)x4+(−1−2)x2\frac{dy}{dx} = (2 + 3 + 4)x^8 + (1 + 6)x^6 + (-2 - 3)x^4 + (-1 - 2)x^2dxdy=(2+3+4)x8+(1+6)x6+(−2−3)x4+(−1−2)x2dydx=9x8+7x6−5x4−3x2\frac{dy}{dx} = 9x^8 + 7x^6 - 5x^4 - 3x^2dxdy=9x8+7x6−5x4−3x23. 最終的な答えdydx=9x8+7x6−5x4−3x2\frac{dy}{dx} = 9x^8 + 7x^6 - 5x^4 - 3x^2dxdy=9x8+7x6−5x4−3x2