関数 $y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)$ を微分せよ。解析学微分積の微分法多項式2025/6/281. 問題の内容関数 y=(x3+2x)(x2+x+2)(3x+1)y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)y=(x3+2x)(x2+x+2)(3x+1) を微分せよ。2. 解き方の手順積の微分法を用いる。3つの関数の積の微分は、以下のようになる。(uvw)′=u′vw+uv′w+uvw′(uvw)' = u'vw + uv'w + uvw'(uvw)′=u′vw+uv′w+uvw′ここで、u=x3+2xu = x^3 + 2xu=x3+2xv=x2+x+2v = x^2 + x + 2v=x2+x+2w=3x+1w = 3x + 1w=3x+1とすると、それぞれの導関数は、u′=3x2+2u' = 3x^2 + 2u′=3x2+2v′=2x+1v' = 2x + 1v′=2x+1w′=3w' = 3w′=3となる。したがって、y′=(x3+2x)′(x2+x+2)(3x+1)+(x3+2x)(x2+x+2)′(3x+1)+(x3+2x)(x2+x+2)(3x+1)′y' = (x^3 + 2x)'(x^2 + x + 2)(3x + 1) + (x^3 + 2x)(x^2 + x + 2)'(3x + 1) + (x^3 + 2x)(x^2 + x + 2)(3x + 1)'y′=(x3+2x)′(x2+x+2)(3x+1)+(x3+2x)(x2+x+2)′(3x+1)+(x3+2x)(x2+x+2)(3x+1)′y′=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)y' = (3x^2 + 2)(x^2 + x + 2)(3x + 1) + (x^3 + 2x)(2x + 1)(3x + 1) + (x^3 + 2x)(x^2 + x + 2)(3)y′=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)これを展開して整理する。第1項: (3x2+2)(x2+x+2)(3x+1)=(3x2+2)(3x3+4x2+7x+2)=9x5+12x4+21x3+6x2+6x3+8x2+14x+4=9x5+12x4+27x3+14x2+14x+4(3x^2 + 2)(x^2 + x + 2)(3x + 1) = (3x^2 + 2)(3x^3 + 4x^2 + 7x + 2) = 9x^5 + 12x^4 + 21x^3 + 6x^2 + 6x^3 + 8x^2 + 14x + 4 = 9x^5 + 12x^4 + 27x^3 + 14x^2 + 14x + 4(3x2+2)(x2+x+2)(3x+1)=(3x2+2)(3x3+4x2+7x+2)=9x5+12x4+21x3+6x2+6x3+8x2+14x+4=9x5+12x4+27x3+14x2+14x+4第2項: (x3+2x)(2x+1)(3x+1)=(x3+2x)(6x2+5x+1)=6x5+5x4+x3+12x3+10x2+2x=6x5+5x4+13x3+10x2+2x(x^3 + 2x)(2x + 1)(3x + 1) = (x^3 + 2x)(6x^2 + 5x + 1) = 6x^5 + 5x^4 + x^3 + 12x^3 + 10x^2 + 2x = 6x^5 + 5x^4 + 13x^3 + 10x^2 + 2x(x3+2x)(2x+1)(3x+1)=(x3+2x)(6x2+5x+1)=6x5+5x4+x3+12x3+10x2+2x=6x5+5x4+13x3+10x2+2x第3項: 3(x3+2x)(x2+x+2)=3(x5+x4+2x3+2x3+2x2+4x)=3(x5+x4+4x3+2x2+4x)=3x5+3x4+12x3+6x2+12x3(x^3 + 2x)(x^2 + x + 2) = 3(x^5 + x^4 + 2x^3 + 2x^3 + 2x^2 + 4x) = 3(x^5 + x^4 + 4x^3 + 2x^2 + 4x) = 3x^5 + 3x^4 + 12x^3 + 6x^2 + 12x3(x3+2x)(x2+x+2)=3(x5+x4+2x3+2x3+2x2+4x)=3(x5+x4+4x3+2x2+4x)=3x5+3x4+12x3+6x2+12xy′=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12xy' = 9x^5 + 12x^4 + 27x^3 + 14x^2 + 14x + 4 + 6x^5 + 5x^4 + 13x^3 + 10x^2 + 2x + 3x^5 + 3x^4 + 12x^3 + 6x^2 + 12xy′=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12xy′=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4y' = (9 + 6 + 3)x^5 + (12 + 5 + 3)x^4 + (27 + 13 + 12)x^3 + (14 + 10 + 6)x^2 + (14 + 2 + 12)x + 4y′=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4y′=18x5+20x4+52x3+30x2+28x+4y' = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4y′=18x5+20x4+52x3+30x2+28x+43. 最終的な答えy′=18x5+20x4+52x3+30x2+28x+4y' = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4y′=18x5+20x4+52x3+30x2+28x+4